「スパゲッティを無作為に2か所で折り、3本に分けたとき、その3本で三角形が作れる確率を求めよ。」という問題です。ここで言うスパゲッティとはゆでる前の固いもので、もちろん曲げることも伸ばしたり縮めたりすることはできません。では、この問題をどうやって解くのか解説していきましょう。
ここで紹介するとき方はあくまで一例です。私の力では他の解法は見つけれなかったので、見つけた方は是非教えてください。
スパゲッティを無作為に2か所で折り、3本に分けたとき、その3本で三角形が作れる確率を求めよ。
折れる前のスパゲッティの長さを1とします。(何でもいいのですが便利上1とします。)
折れたうちの一本を$\normalsize x$、一本を$\normalsize y$、最後の一本を$1−(\normalsize x +\normalsize y)$とします。あたりまえですが、これら3本の長さはすべて正となります。
もちろんながら、$\normalsize xと\normalsize y$の合計は1より小さくなります。
また、3本の折れたスパゲッティで三角形が作れることの必要十分条件は、どの1本もほかの2本の合計より短いことです。
これらのことを式にすると、
$ \begin{eqnarray}
\left\{
\begin{array}{l}
\normalsize x +\normalsize y \lt1\\\normalsize x\lt \frac{1}{2}\\\normalsize y\lt \frac{1}{2}\\\normalsize x+y\ \gt\frac{1}{2}
\end{array}
\right.
\end{eqnarray} $
となります。これを領域を使って考えると、
今回は確率を領域を使って求めるという少し変わった手法を紹介しました。
今回はインターネットで調べたら出てくる内容でしたが、次回からは4本以上のn本に折ったときn角形ができる確率はどうなるのかについて書こうと思ってます。
気が向いたときにのんびり書こうと思ってるのでいつになるかわかりませんが、気長に待っていてください。
誤植、ミス等があればコメント、twtterのDMでおしらせください。
自分の実力では書けるかわかりませんが、リクエスト受け付けてます。