10

外延性公理は等号の定義じゃないよ!

1835
3
$$$$

はじめに

外延性公理は等号の定義ではありません。

等号は代入できないといけない

(ヒルベルト流)等号付き一階述語論理において、等号の反射律と代入は論理的公理になっています。

等号の論理的公理

$P(x)$を論理式とする.

  1. $\forall x\ x = x$ [等号の反射律]
  2. $\forall x\forall y(x = y \Rightarrow (P(x) \Rightarrow P(y)))$ [等号の代入]

もし集合の等号を外延性公理のように定義すると、等号の代入が証明できなくなります。

ウソの等号の定義

集合$x,\ y$について
$x='y :\Leftrightarrow \forall z(z\in x\Leftrightarrow z\in y)$

反例
  • $M:=\{0,\ 1\}$
  • $E:=\{(0,0),\ (0,1)\}$
    とすると$0='1$かつ$0E0$だが$\neg 1E1$となり等号の代入を満たさない.
反例
  • $M:=\{0,\ 1,\ 2\}$
  • $E:=\{(0,1)\}$
    とすると$0='2$かつ$0E1$だが$\neg 2E1$となり等号の代入を満たさない.
    ($(M,E)$は分出公理図式, 和集合公理, 基礎の公理, 選択公理を満たすモデル)

おわりに

ZFC$-$外延性公理のモデルの作り方を知らないので誰か教えてください。

投稿日:2021113
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。

投稿者

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中