1
解説大学数学以上
文献あり

ナビエ-ストークス方程式の解の非存在 (2月17日 17:43 改訂)

187
1
通報
$$$$

誤りや不備または普通の感想があればコメントをください.

関数$u:\mathbb{R}\times\mathbb{R}^3 \to \mathbb{R}^3$, $\mathfrak{p}:\mathbb{R}\times\mathbb{R}^3 \to \mathbb{R}$についての方程式
$\begin{cases} \partial_t u-\Delta u +(u\cdot\nabla)u+\nabla\mathfrak{p}-f=0\\ \mathrm{div}u=0 \end{cases}$
は, 任意の$\mathfrak{q}$に対して$f\neq \nabla\mathfrak{q}$ならば定数関数の解$u$を持たない.

$\partial_t u-\Delta u +(u\cdot\nabla)u+\nabla\mathfrak{p}-f=0$
が定数関数の解$u$を持てば$f=\nabla\mathfrak{p}$でなければならない.

参考文献

投稿日:29
更新日:47

投稿者

収入が少ないので, Mathlogのお金を支払う機能で支援してくだされば幸いです. 研究の記事の他に, 発見シリーズ, 行間シリーズ, 超入門シリーズも書いています. 北田均『数理解析学概論』新訂版序文の「ほぼ独学と思われる熱心な読者」, 結城浩『数学ガールの秘密ノート/行列が描くもの』あとがきの「類太郎」. 指摘を受けたり自分で誤りに気付いて, 後から訂正することも多々ある. 寛容な目で温かい目で見て頂きたい. 何かあればご連絡を頂きたい. 悪意のあるきつい言い方をされたことも多々あったが, それさえしなければ指摘には真摯に対応したい. 数式, 特に偏微分方程式が好き. 多変数複素解析のヘルマンダーの方法:複素多様体における外微分 d を d=∂′+∂′′ とするとき‚ 既知微分形式 f と未知微分形式 u について ∂′′u=f (ディーバー方程式)の可解性で諸問題を考える方法, 複素多様体における微分幾何として複素モンジュ-アンペール方程式の解の存在, 代数解析の偏微分方程式への応用でも何かを遺したい.

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。
バッチを贈って投稿者を応援しよう

バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。

コメント

収入が少ないので, Mathlogのお金を支払う機能で支援してくだされば幸いです. 研究の記事の他に, 発見シリーズ, 行間シリーズ, 超入門シリーズも書いています. 北田均『数理解析学概論』新訂版序文の「ほぼ独学と思われる熱心な読者」, 結城浩『数学ガールの秘密ノート/行列が描くもの』あとがきの「類太郎」. 指摘を受けたり自分で誤りに気付いて, 後から訂正することも多々ある. 寛容な目で温かい目で見て頂きたい. 何かあればご連絡を頂きたい. 悪意のあるきつい言い方をされたことも多々あったが, それさえしなければ指摘には真摯に対応したい. 数式, 特に偏微分方程式が好き. 多変数複素解析のヘルマンダーの方法:複素多様体における外微分 d を d=∂′+∂′′ とするとき‚ 既知微分形式 f と未知微分形式 u について ∂′′u=f (ディーバー方程式)の可解性で諸問題を考える方法, 複素多様体における微分幾何として複素モンジュ-アンペール方程式の解の存在, 代数解析の偏微分方程式への応用でも何かを遺したい.