5

ζ(3)の色々な表示方法

225
5
$$$$

 そういえばアペリー定数について記事を出すと言っていたので忘れない内に書いてしまいます.
というか前回の記事で一つの命題に対する色々な証明を書くとめちゃくちゃしんどかったので今回は最初のオイラーによる表示だけを証明しようと思います.(ここだけは譲れません)

オイラーによる表示(1)

$\displaystyle ζ(3)=\frac{2π^2}{7}\log 2+\frac{16}{7}\int_{0}^{\frac{π}{2}}x\log(\sin x)dx$

$\displaystyle \sum_{n:odd}\frac{1}{n^3}=\frac{π^2}{4}\log 2+2\int_{0}^{\frac{π}{2}}x\log(\sin x)dx$を示す.(1)
$\displaystyle\log(1-e^{2ix})=-\sum_{n=1}^{\infty}\frac{e^{2inx}}{n}$の実部を比較する.
左辺では$\displaystyle \Re(\log(1-e^{2ix}))=\log|1-e^{2ix}|=\log(2\sin x)$
右辺ではオイラーの公式より$\displaystyle -\sum_{n=1}^{\infty}\frac{\cos(2nx)}{n}$となる.
このことより、$\displaystyle \log(2\sin x)=-\sum_{n=1}^{\infty}\frac{\cos(2nx)}{n}$
$\displaystyle \log(\sin x)=-\log 2-\sum_{n=1}^{\infty}\frac{\cos(2nx)}{n}$
したがって$\displaystyle \int_{0}^{\frac{π}{2}}\log(\sin x)dx=-\frac{π}{2}\log 2$
これにならい$\displaystyle I=\int_{0}^{\frac{π}{2}}x\log(\sin x)dx$を考える.
$\displaystyle I=\int_{0}^{\frac{π}{2}}x\left(-\log 2-\sum_{n=1}^{\infty}\frac{\cos(2nx)}{n}\right)dx$
$\displaystyle\quad =-\log2\int_{0}^{\frac{π}{2}}xdx-\sum_{n=1}^{\infty}\frac{1}{n}\int_{0}^{\frac{π}{2}}x\cos(2nx)dx$
$\displaystyle\quad=-\frac{π^2}{8}\log 2+\frac{1}{2}\sum_{n:odd}\frac{1}{n^3}$
$∴\displaystyle \sum_{n:odd}\frac{1}{n^3}=\frac{π^2}{4}\log 2+2I$より(1)が成り立つ.
また、$\displaystyle \sum_{n:odd}\frac{1}{n^3}=\frac{7}{8}ζ(3)$ということから$ζ(3)$が導ける.

オイラーによる表示(2)

$\displaystyle ζ(3)=\frac{π^2}{7}\left[1-4\sum_{k=1}^{\infty}\frac{ζ(2k)}{(2k+1)(2k+2)2^{2k}}\right]$

積分表示(1)

$\displaystyleζ(3)=\int_{0}^{1}\int_{0}^{1}\int_{0}^{1}\frac{1}{1-xyz}dxdydz$

積分表示(2)

$\displaystyle ζ(3)=\frac{2}{3}\int_{0}^{\infty}\frac{x^2}{e^x+1}dx$

サイモンによる表示(1)

$\displaystyle ζ(3)=\frac{7}{180}π^3-2\sum_{n=1}^{\infty}\frac{1}{n^3(e^{2πn}-1)}$

サイモンによる表示(2)

$\displaystyle ζ(3)=14\sum_{n=1}^{\infty}\frac{1}{n^3\sinh(πn)}-\frac{11}{2}\sum_{n=1}^{\infty}\frac{1}{n^3(e^{2πn}-1)}-\frac{7}{2}\sum_{n=1}^{\infty}\frac{1}{n^3(e^{2πn}+1)}$

最後の方は証明を書かなかったことで謎にRamanujan感がでちゃいましたが殺風景すぎるので今度からはちゃんと証明も書くようにします.
最後まで見ていただきありがとうございました.

投稿日:8日前
更新日:7日前

投稿者

中3です. 主に解析接続・群論・数理モデル・ヘッセ行列・素数等の投稿をしていこうと思います! 僕自身初学者レベルなのでアドバイス・指摘など待っています

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。
バッチを贈って投稿者を応援しよう

バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。

コメント

中3です. 主に解析接続・群論・数理モデル・ヘッセ行列・素数等の投稿をしていこうと思います! 僕自身初学者レベルなのでアドバイス・指摘など待っています