$$\newcommand{BA}[0]{\begin{align*}}
\newcommand{BE}[0]{\begin{equation}}
\newcommand{bl}[0]{\boldsymbol}
\newcommand{BM}[0]{\begin{matrix}}
\newcommand{D}[0]{\displaystyle}
\newcommand{EA}[0]{\end{align*}}
\newcommand{EE}[0]{\end{equation}}
\newcommand{EM}[0]{\end{matrix}}
\newcommand{h}[0]{\boldsymbol{h}}
\newcommand{k}[0]{\boldsymbol{k}}
\newcommand{L}[0]{\left}
\newcommand{l}[0]{\boldsymbol{l}}
\newcommand{m}[0]{\boldsymbol{m}}
\newcommand{n}[0]{\boldsymbol{n}}
\newcommand{R}[0]{\right}
\newcommand{vep}[0]{\varepsilon}
$$
定義
$\BA\D
\kappa_s(x)={_2}F_1\L[\BM s,1-s\\1 \EM;x\R],\qquad K_s(x)=\frac{\pi}{2}\kappa_s(x^2),\qquad P_n(x)=\sum_{k=0}^n \binom{n}{k}\binom{k+n}{k}\L(\frac{x-1}{2}\R)^k
\EA$
命題
$\BA\D
\frac{d}{dx}\frac{\kappa_s(1-x)}{\kappa_s(x)}=-\frac{\sin\pi s}{\pi}\frac{1}{x(1-x)\,{\kappa_s(x)}^2}
\EA$
命題
$\BA\D
\int_0^z \frac{1}{y(1-y)\,{\kappa_s(y)}^2}\int_0^y x^{n-1}\kappa_s(x)\,dx\,dy=\frac{1}{n^2\alpha_n(s)}\sum_{n\le m}\frac{z^m\alpha_m(s)}{\kappa_s(z)}\qquad \L(\alpha_r(s)=\frac{{(s,1-s)}_r}{{r!}^2}\R)
\EA$
命題
$\BA\D
\L(n^2-(1-2s)^2\R)\int_0^1 x^{n}K_s(x)\,dx-(n-1)^2\int_0^1 x^{n-2}K_s(x)\,dx=\sin\pi s
\EA$
命題
$\BA\D
\L(n^2-(1-2s)^2\R)\int_0^1 x^{n}K_s(\sqrt{1-x^2})\,dx-(n-1)^2\int_0^1 x^{n-2}K_s(\sqrt{1-x^2})\,dx=0
\EA$
命題
$\BA\D
\pi\int_0^1 x^{n-1}\kappa_s(1-x)\,dx=\frac{\sin\pi s}{n^2\alpha_n(s)}
\EA$
命題
$\BA\D
\int_0^1 K_s(\sqrt{x})P_n(2x-1)\,dx=\frac{\sin\pi s}{2(n+s)(n+1-s)}
\EA$
命題
$\BA\D
n\L({n}^2-(1-2s)^2\R)\int_0^1 K_s(x)P_n(x)\,dx+(n-1)\L((n-1)^2-(1-2s)^2\R)\int_0^1 K_s(x)P_{n-2}(x)\,dx=(2n-1)\sin \pi s
\EA$
命題
$\BA\D
{n}^2\L({n}^2-{(1-2s)}^2\R)\int_0^1 {K_s(\sqrt{x})}^2P_n(2x-1)\,dx-{(n-1)}^2\L({(n-1)}^2-{(1-2s)}^2\R)\int_0^1 {K_s(\sqrt{x})}^2P_{n-2}(2x-1)\,dx=(2n-1)\sin^2\pi s
\EA$
命題
$\BA\D
{n}^2\L({n}^2-{(1-2s)}^2\R)\int_0^1 K_s(\sqrt{x})K_s(\sqrt{1-x})P_n(2x-1)\,dx-{(n-1)}^2\L({(n-1)}^2-{(1-2s)}^2\R)\int_0^1 K_s(\sqrt{x})K_s(\sqrt{1-x})P_{n-2}(2x-1)\,dx=0
\EA$
命題
$\BA\D
&2n\L({(2n)}^2-(1-2s)^2\R)\int_0^1 K_s(\sqrt{1-x^2})P_{2n}(x)\,dx-(2n-1)\L((2n-1)^2-(1-2s)^2\R)\int_0^1 K_s(\sqrt{1-x^2})P_{2n-2}(x)\,dx=0\\
&(2n+1)\L({(2n+1)}^2-(1-2s)^2\R)\int_0^1 K_s(\sqrt{1-x^2})P_{2n+1}(x)\,dx-2n\L((2n)^2-(1-2s)^2\R)\int_0^1 K_s(\sqrt{1-x^2})P_{2n-1}(x)\,dx=(-1)^n(4n+1)\beta_n\sin\pi s\qquad \L(\beta_r=\frac{\binom{2r}{r}}{2^{2r}}\R)
\EA$