この記事は対数を含む積分によって得られた結果の羅列で、解説記事ではありません。
NKS
氏や
便利
氏らとのスペースで話題になったり、そこから少し派生したりした積分が中心です。導出過程については、別途気が向いた時に記事にしようかなと思います。
$\displaystyle\int_0^1x^a\ln^bx\,dx=(-1)^b\frac{b!}{(a+1)^{b+1}}$
$\displaystyle\int_0^1x^{n-1}\ln(1-x)=-\frac{H_n}{n}$
$\displaystyle\int_0^1x^{n-1}\ln^2(1-x)=\frac{H^2_n+H_n^{(2)}}{n}$
$\displaystyle\int_0^1x^{n-1}\ln^3(1-x)=-\frac{H^3_n+3H_nH_n^{(2)}+2H_n^{(3)}}{n}$
$\displaystyle\int_0^1\frac{\ln^2(1+x)}{x}dx=\frac{1}{4}\zeta(3)$
$\displaystyle\int_0^1\frac{\ln^3(1+x)}{x}dx=-\frac{21}{4}\ln2\zeta(3)+\frac{\pi^2\ln^22}{4}-\frac{\ln^42}{4}+\frac{\pi^4}{15}-6\mathrm{Li}_4\left(\frac{1}{2}\right)$
$\displaystyle\int_0^1\frac{\ln^2(1-x)}{x}dx=2\zeta(3)$
$\displaystyle\int_0^1\frac{\ln^3(1-x)}{x}dx=-\frac{\pi^4}{15}$
$\displaystyle\int_0^1 \ln(1+x)\ln(1-x)=2\ln^2 2-2\ln 2-\dfrac{\pi^2}{6}$
$\displaystyle\int_0^1\ln^2(1+x)\ln^2(1-x)dx=-8(\zeta(2)+\zeta(3)-3)-\zeta(4)+4(2\ln2\zeta(2)+\ln^2\zeta(2)+2\ln2\zeta(3)-6\ln2+3\ln^22-\ln^32)+\ln^42$
$\displaystyle\int_0^1\frac{\ln(1+x)\ln(1-x)}{x}dx=-\frac{5}{8}\zeta(3)$
$\displaystyle\int_0^1 \frac{\ln^2(1+x)\ln(1-x)}{x}dx=-\frac{\pi^4}{240}$
$\displaystyle\int_0^1 \frac{\ln(1+x)\ln^2(1-x)}{x}dx=-\frac{5}{8}\zeta(4)+2 \left( \operatorname{Li_4}\left(\frac12\right)+\frac78\ln2\zeta(3)-\frac14\ln^22\zeta(2)+\frac{1}{24} \ln^24 \right)$
$\displaystyle\int_0^1\frac{\ln^2(1+x)\ln^2(1-x)}{x}dx=\frac{2\ln^52}{15}-\frac{2\ln^32\zeta(2)}{3}+\frac{7\ln^22\zeta(3)}{4}-\frac{25\zeta(5)}{8}+4\ln2\mathrm{Li}_4\left(\frac{1}{2}\right)+4\mathrm{Li}_5\left(\frac{1}{2}\right)$
$\displaystyle\int_0^1\frac{\ln^3(1+x)\ln(1-x)}{x}dx=-6\mathrm{Li}_5\left(\frac{1}{2}\right)-6\ln2\mathrm{Li}_4\left(\frac{1}{2}\right)+\frac{3}{4}\zeta(5)+\frac{21}{8}\zeta(2)\zeta(3)-\frac{21}8\ln^22\zeta(3)+\ln^32\zeta(2)-\frac15\ln^52$
$\displaystyle\int_0^1\frac{\ln(1+x)\ln^3(1-x)}{x}dx=6\mathrm{Li}_5\left(\frac{1}{2}\right)+6\ln2\mathrm{Li}_4\left(\frac{1}{2}\right)-\frac{81}{16}\zeta(5)-\frac{21}{8}\zeta(2)\zeta(3)+\frac{21}{8}\ln^22\zeta(3)-\ln^32\zeta(2)+\frac{1}{5}\ln^52$
$\displaystyle\int_0^1 \frac{\ln(1+x)\ln(1-x)}{1+x}dx = \frac{\ln^32}{3}-\frac{\pi^2\ln2}{12}+\frac{\zeta(3)}{8}$
$\displaystyle\int_0^1\frac{\ln^2(1+x)\ln^2(1-x)}{1+x}dx=\frac{63\zeta(5)}{8}-\frac{9\ln2\zeta(4)}{2}+4\ln^22\zeta(3)-\frac{4\ln^32\zeta(2)}{3}-2\zeta(2)\zeta(3)+\frac{7\ln^52}{30}-4\mathrm{Li}_5\left(\frac{1}{2}\right)$
$\displaystyle\int_0^1\frac{\ln(1+x)\ln(1-x)}{1+x^2}\ dx=\text{Im}\left(\operatorname{Li}_3(1+i)\right)-\frac{\pi^3}{32}-G\ln2$
$\displaystyle\int_0^1\frac{\ln(1+x)\ln^2x\ln{(1-x)}}{x}dx=\frac{3\zeta(2)\zeta(3)}{4}-\frac{27\zeta(5)}{16}$
$\displaystyle\int_0^1\frac{\ln(1+x)\ln^4x\ln{(1-x)}}{x}dx=\frac{9\zeta(3)\zeta(4)+45\zeta(2)\zeta(5)}{4}-\frac{363\zeta(7)}{16}$