ãããæ¥ããã¡ã®ããã®ãªå¥³ç¥ããŸ(?) ã次ã®ïŒã€ã®éæ³ãç§ã«æããŠãã ãããŸããã
éæ³ïŒ-a "å¹³æ¹åã®æçåŒâ ãååž°çã«çæããçåŒ |
---|
$\{a^2+c^2=b^2+d^2~,a\ne b\}$ $\begin{align} &\left(am+bn\right)^2+\left(cm+dn\right)^2\\ =&\left(an+bm\right)^2+\left(cn+dm\right)^2 \end{align}$ |
$1^2+7^2=5^2+5^2$
$\rightarrow~(1m+5n)^2+(7m+5n)^2=(1n+5m)^2+(7n+5m)^2$
$2^2+9^2=6^2+7^2$
$\rightarrow~(2m+6n)^2+(9m+7n)^2=(2n+6m)^2+(9n+7m)^2$
$3^2+11^2=7^2+9^2$
$\rightarrow~(3m+7n)^2+(11m+9n)^2=(3n+7m)^2+(11n+9m)^2$
$4^2+13^2=8^2+11^2$
$\rightarrow~(4m+8n)^2+(13m+11n)^2=(4n+8m)^2+(13n+11m)^2$
éæ³ïŒ-b "ç«æ¹åã®æçåŒ" ãååž°çã«çæããçåŒïŒè€å·åé ïŒ |
---|
$\{a^3+c^3=b^3+d^3~,a\ne b\}$ $\begin{align} &\left(am^2+bn^2\pm(c+d)\sqrt{\frac{c-d}{b-a}}mn\right)^3+\left(cm^2+dn^2\pm(a+b)\sqrt{\frac{a-b}{d-c}}mn\right)^3\\ =&\left(an^2+bm^2\pm(c+d)\sqrt{\frac{c-d}{b-a}}nm\right)^3+\left(cn^2+dm^2\pm(a+b)\sqrt{\frac{a-b}{d-c}}nm\right)^3\\ \end{align}$ |
$1^3+12^3=9^3+10^3$
$\rightarrow~~~(1m^2+9n^2\pm11mn)^3+(12m^2+10n^2\pm20mn)^3$
ã$=(1n^2+9m^2\pm11nm)^3+(12n^2+10m^2\pm20nm)^3$
$3^3+4^3=(-5)^3+6^3$
$\rightarrow~~~(3m^2-5n^2\pm5mn)^3+(4m^2+6n^2\mp4mn)^3$
ã$=(3n^2-5m^2\pm5nm)^3+(4n^2+6m^2\mp4nm)^3$
$7^3+14^3=(-17)^3+20^3$
$\rightarrow~~~(7m^2-17n^2\pm17mn)^3+(14m^2+20n^2\mp20mn)^3$
ã$=(7n^2-17m^2\pm17nm)^3+(14n^2+20m^2\mp20nm)^3$
ã¡ãªã¿ã«ã$6^3+(-3)^3=4^3+5^3$ ããã¯
$$\quad(6m^2+4n^2\pm4mn)^3+(-3m^2+5n^2\pm5mn)^3=(6n^2+4m^2\pm4nm)^3+(-3n^2+5m^2\pm5nm)^3$$
ãåŸãããããã¯ãã®æåãªã©ãããžã£ã³æ°ãçºèŠããç«æ¹åã®æçåŒã®ïŒã€ïŒ
wikipediaåç
§
ïŒ
$$\quad(6A^2-4AB+4B^2)^3+(-3A^2-5AB+5B^2)^3=(4A^2-4AB+6B^2)^3+(5A^2-5AB-3B^2)^3$$
ãšäžèŽããŸãã
ãšããããèªåã§ãããããªçåŒã©ã£ããåºãŠããã®ïŒããšããããããªããªã£ãŠããŸããŸãããïŒæåã«ã²ããããã¢ã€ãã¢ãã©ããªã ã£ããâŠïŒ
åã«èšŒæããã ããªããå¹³æ¹åã®ã»ãã¯å±éããã°å®¹æã«å¯èœã§ãã
ã§ãç«æ¹åã®ã»ãã¯å±éããã ãã§ãã¿ã€ãã³ã§ãèšç®ãã¹ã®å€ãç§ã«ã¯ãæäžãç¶æ
ã»ã»ã»
ãæãç«ã£ãŠããã ãããŸãã£ã(ïŒÂŽâïœ)
ãšæŸçœ®ããŠããã®ã§ãããç§ã®ããŒãã£å çã㚠巚倧æ°å€§å¥œãbot ããã®å€å€§ãªããååã®ããšãç¡äºãã®åŒã«ã蚌æãäžããããšãã§ããŸããã
ãã®éãç§éãè©Šè¡é¯èª€ããéçšãåºé¡ããŠã¿ããã©ãããªãšãã話ã«ãªããæ¯éãã®çåŒã®é¢çœããçæ§ã«ãå³ãã£ãŠããã ããããäœåã®éã³ãšçžæããŸããããããããã°ææŠããŠã¿ãŠããã ããã°å¹žãã§ãïŒ
次ã®çåŒã $m,n$ ã«ã€ããŠã®æçåŒãšãªãããã« $x,y$ ã $a,b,c,d$ ãçšããŠè¡šããã |
---|
$\{a^3+c^3=b^3+d^3~,~a\ne b\}$ $\begin{align} &\left(am^2+bn^2+mnx\right)^3+\left(cm^2+dn^2+mny\right)^3\\ =&\left(an^2+bm^2+nmx\right)^3+\left(cn^2+dm^2+nmy\right)^3 \end{align}$ |
$\begin{align} &(am^2+bn^2+mnx)^3+(cm^2+dn^2+mny)^3=(an^2+bm^2+nmx)^3+(cn^2+dm^2+nmy)^3\\\\ &\text{å±éããŠäž¡èŸºãå³èŸºã§åŒããš}\\ &+(a^3 m^6 + b^3 n^6 + m^3 n^3 x^3 + 6 a b m^3 n^3 x + 3 a^2 b m^4 n^2 + 3 a b^2 m^2 n^4 + 3 a m^4 n^2 x^2 + 3 b m^2 n^4 x^2 + 3 a^2 m^5 n x + 3 b^2 m n^5 x)\\ &+(c^3 m^6 + d^3 n^6 + m^3 n^3 y^3 + 6 c d m^3 n^3 y + 3 c^2 d m^4 n^2 + 3 c d^2 m^2 n^4 + 3 c m^4 n^2 y^2 + 3 d m^2 n^4 y^2 + 3 c^2 m^5 n y + 3 d^2 m n^5 y)\\ &-(b^3 m^6 + a^3 n^6 + m^3 n^3 x^3 + 6 a b m^3 n^3 x + 3 a b^2 m^4 n^2 + 3 a^2 b m^2 n^4 + 3 b m^4 n^2 x^2 + 3 a m^2 n^4 x^2 + 3 b^2 m^5 n x + 3 a^2 m n^5 x)\\ &-(d^3 m^6 + c^3 n^6+ m^3 n^3 y^3 + 6 c d m^3 n^3 y + 3 c d^2 m^4 n^2 + 3 c^2 d m^2 n^4 + 3 d m^4 n^2 y^2 + 3 c m^2 n^4 y^2 + 3 d^2 m^5 n y + 3 c^2 m n^5 y)\\ &=0\\\\ &\text{çžæ®ºã§ããé ãæ¶ããå šäœã}~3mn~\text{ã§ããããš}\\ [\\ &+(a^2 b m^3 n + a b^2 m n^3 + a m^3 n x^2 + b m n^3 x^2 + a^2 m^4 x + b^2 n^4 x)\\ &+(c^2 d m^3 n + c d^2 m n^3 + c m^3 n y^2 + d m n^3 y^2 + c^2 m^4 y + d^2 n^4 y)\\ &-(a b^2 m^3 n + a^2 b m n^3 + b m^3 n x^2 + a m n^3 x^2 + b^2 m^4 x + a^2 n^4 x)\\ &-(c d^2 m^3 n + c^2 d m n^3 + d m^3 n y^2 + c m n^3 y^2 + d^2 m^4 y + c^2 n^4 y)\\ ]&(3mn)=0\\\\ &\text{åé åãçšããŠ}~(m^3n-mn^3)~\text{ãš}~(m^4-n^4)~\text{ã§ããããš}\\ [\\ &+(a^2 b+a x^2+c^2 d+c y^2+a b^2-b x^2-c d^2+d y^2)(m^3n-mn^3)\\ &+(a^2x+c^2y-b^2x-d^2y)(m^4-n^4)\\ ]&(3mn)=0\\\\ &\text{æŽçããŠãäž¡é ã}~(m^2-n^2)~\text{ã§ããããš}\\ [\\ &+\left[ab(a-b)+cd(c-d)+(a-b)x^2+(c-d)y^2\right]mn\\ &+\left[(a^2-b^2)x+(c^2-d^2)y\right](m^2+n^2)\\ ]&3mn(m^2-n^2)=0\\\\ \end{align}$
$x,~y$ 㯠$a,b,c,d$ ã§è¡šãã $m,n$ ã®å€ã«ã¯äŸåããªãããã第äžå åå
ã® $mn$ ã®ä¿æ°ãš $m^2+n^2$ ã®ä¿æ°ã¯å
±ã« $0$ ã§ãªããã°ãªããŸãããïŒãããªãã°çåŒå
šäœã $0$ ã«ããããã« $x,~y$ ã $m,~n$ ã®å€ã«äŸåãããããåŸãªããªããŸããïŒ
ããã§ã次ã®é£ç«æ¹çšåŒã®è§£ãã $x,y$ ãå°ããŸãã
$$\begin{cases}
ab(a-b)+cd(c-d)+(a-b)x^2+(c-d)y^2=0&\cdots~(1)\\[8pt]
(a^2-b^2)x+(c^2-d^2)y=0&\cdots~(2)
\end{cases}$$
$(2)$ ãã $\begin{cases}x^2=\frac{(c^2-d^2)^2}{(a^2-b^2)^2}y^2\\y^2=\frac{(a^2-b^2)^2}{(c^2-d^2)^2}x^2\end{cases}~\cdots(3)\\[8pt]$
$(3)$ ã® $x^2$ ã $(1)$ ã«ä»£å
¥ãããš
$$ab(a-b)+cd(c-d)+\left[\frac{(c^2-d^2)^2+(c-d)(a+b)(a^2-b^2)}{(a+b)(a^2-b^2)}\right]y^2=0$$
$\begin{align}
y^2
=&-\frac{ab(a^2-b^2)^2+cd(c-d)(a+b)(a^2-b^2)}{(c^2-d^2)^2+(c-d)(a+b)(a^2-b^2)}\\
=&\frac{-(a+b)(a^2-b^2)[ab(a-b)+cd(c-d)]}{(c-d)[(a+b)(a^2-b^2)+(c+d)(c^2-d^2)]}\\\\
&\text{ããã§ãåææ¡ä»¶ãã}~b^3-a^3=c^3-d^3~\text{ãå©çšããŠ}\\
&\begin{cases}(b^3-a^3)+(a^3-b^3)=0\\-(c^3-d^3)-(a^3-b^3)=0\end{cases}~\text{ãååãšåæ¯ã®äžéšã«å ããŸãã}\\\\
=&\frac{[(b^3-a^3)+(a^3-b^3)-(a+b)(a^2-b^2)][ab(a-b)+cd(c-d)]}{(c-d)[(a+b)(a^2-b^2)+(c+d)(c^2-d^2)-(c^3-d^3)-(a^3-b^3)]}\\
=&\frac{[(b^3-a^3)+(a^3-b^3)-(a^3-b^3-ab^2+ba^2)][ab(a-b)+cd(c-d)]}{(c-d)[(a+b)(a^2-b^2)-(a^3-b^3)+(c+d)(c^2-d^2)-(c^3-d^3)]}\\
=&\frac{[(b^3-a^3)+(ab^2-ba^2)][ab(a-b)+cd(c-d)]}{(c-d)[(-ab^2+ba^2)+(-cd^2+dc^2)]}\\
=&\frac{[(b^3-a^3)+ab(b-a)][ab(a-b)+cd(c-d)]}{(c-d)[ab(a-b)+cd(c-d)]}\\
=&\frac{(b-a)(b^2+a^2+ab+ab)}{c-d}\\
=&\frac{(b-a)(a+b)^2}{c-d}\\
=&\frac{(a-b)(a+b)^2}{d-c}\\
&\\
y=&\pm(a+b)\sqrt{\frac{a-b}{d-c}}
\end{align}$
$(3)$ ãã $x$ ãš $y$ 㯠$a,b$ ãš $c,d$ ã«ã€ããŠå¯Ÿç§°ãªé¢ä¿ã«ããããã
$\begin{cases} x=\pm(c+d)\sqrt{\frac{c-d}{b-a}}\\ y=\pm(a+b)\sqrt{\frac{a-b}{d-c}}\\ \end{cases}$
$b=-a$ ãã $a^3+c^3=b^3+d^3$ 㯠$a^3+c^3=-a^3+d^3$ ãšããããšã«ãªããã
$2a^3=d^3-c^3$ ãšãªãã$(1)$ ãš $(2)$ ã¯
$$\begin{cases}
(1)~\rightarrow&-2a^3+cd(c-d)+(a-b)x^2+(c-d)y^2=0&\\
&-(d^3-c^3)+cd(c-d)+(a-b)x^2+(c-d)y^2=0&\cdots(1)'\\[8pt]
(2)~\rightarrow&(c+d)(c-d)y=0~\rightarrow~y=0&\cdots(2)'
\end{cases}$$
$(2)'$ ã $(1)'$ ã«ä»£å
¥ããŠ
$\begin{align}
(a-b)x^2=&(d^3-c^3)-cd(c-d)\\
(b-a)x^2=&(c^3-d^3)+cd(c-d)=(c^2+d^2+cd+cd)(c-d)=(c+d)^2(c-d)\\
x^2=&\frac{(c+d)^2(c-d)}{b-a}\quad\left(\leftarrow~\text{æ¡ä»¶ãã}~a\ne b~\right)\\
\end{align}$
$\begin{cases}
x=\pm(c+d)\sqrt{\frac{c-d}{b-a}}\\
y=0~\left(=\pm(a+b)\sqrt{\frac{a-b}{d-c}}\right)\\
\end{cases}$
$d=-c$ ãã $a^3+c^3=b^3+d^3$ 㯠$a^3+c^3=b^3-c^3$ ãšããããšã«ãªããã
$2c^3=b^3-a^3$ ãšãªãã$(1)$ ãš $(2)$ ã¯
$$\begin{cases}
(1)~\rightarrow&ab(a-b)-2c^3+(a-b)x^2+(c-d)y^2=0&\\
&ab(a-b)-(b^3-a^3)+(a-b)x^2+(c-d)y^2=0&\cdots(1)''\\[8pt]
(2)~\rightarrow&(a+b)(a-b)x=0~\rightarrow~x=0&\cdots(2)''
\end{cases}$$
$(2)''$ ã $(1)''$ ã«ä»£å
¥ããŠ
$\begin{align}
(c-d)y^2=&(b^3-a^3)-ab(a-b)\\
(d-c)y^2=&(a^3-b^3)+ab(a-b)=(a^2+b^2+ab+ab)(a-b)=(a+b)^2(a-b)\\
y^2=&\frac{(a+b)^2(a-b)}{d-c}\quad\left(\leftarrow~\text{æ¡ä»¶ãã}~a\ne b~\text{ããªãã¡}~c\ne d~\right)\\
\end{align}$
$\begin{cases}
x=0~\left(=\pm(c+d)\sqrt{\frac{c-d}{b-a}}\right)\\
y=\pm(a+b)\sqrt{\frac{a-b}{d-c}}\\
\end{cases}$
$b=-a,~d=-c$ ãã $a^3+c^3=b^3+d^3$ 㯠$a^3+c^3=-a^3-c^3$ ãšããããšã«ãªããã
$a=-c=-b=d$ãããªãã¡ (1) ãš (2) ã¯
$$\begin{cases}
(1)~\rightarrow&2a^3-2a^3+2ax^2-2ay^2=0&\rightarrow~x^2=y^2\\[8pt]
(2)~\rightarrow&0(a-b)x+0(c-d)y=0&\rightarrow~0=0
\end{cases}$$
ãšãªãããšããã$x,y$ 㯠$x^2=y^2$ ãæºããç¯å²ã§ä»»æã®å€ããšãããšãã§ãã
ããªãã¡ããã®ãããªè§£ã§ãæç«ããŸãã
$$\begin{cases}
x=0~\left(=\pm(c+d)\sqrt{\frac{c-d}{b-a}}\right)\\
y=0~\left(=\pm(a+b)\sqrt{\frac{a-b}{d-c}}\right)\\
\end{cases}$$
å
šãŠã®ã±ãŒã¹ã«å
±éãã解ã¯
$$\begin{cases}
x=\pm(c+d)\sqrt{\frac{c-d}{b-a}}\\
y=\pm(a+b)\sqrt{\frac{a-b}{d-c}}\\
\end{cases}$$
ã§ããããã£ãŠãã®è§£ã¯äžåŒã $m,n$ ã«ã€ããŠã®æçåŒãšããŠæç«ãããããšãã§ããŸãã