0

自作問題No.27

21
0

問題

4次関数のグラフC:y=f(x)は2つの変曲点P,Qをもち、1本の複接線が引けて、異なる2点A(α,f(α)),B(β,f(β))が接点となる。またf(x)の4次の係数は1である。このとき、d3dx3f(x)=0の解をx=γC(γ,f(γ))、複接線をl1、直線PQl2C上の点Cにおける接線をl3l2Cの交点のうちP,Qと異なる点をそれぞれR,Sl3Cの交点のうちCと異なる点をそれぞれD,Eとおく。ただしx座標について、AよりBPよりQRよりSDよりEの方が大きいとする。

(1)直線l1,l2,l3は互いに平行であることを示せ。

(2)線分長の2乗比AB2:PQ2を求めよ。

(3)線分長の2乗比RS2:DE2を求めよ。

(4)直線l2Cで囲まれる部分の面積Sα,βで表わせ。

投稿日:202167
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。
バッチを贈って投稿者を応援しよう

バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。

投稿者

Tokyo Tech 22B理学院 作問サークル(非公式)所属。 主に高校数学の自作問題を投稿します。 まれに問題の解答例、解説を書くこともあります。

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中