0

自作問題No.27

21
0
$$$$

問題

4次関数のグラフ$C:y=f(x)$は2つの変曲点$\mathrm{P},\mathrm{Q}$をもち、1本の複接線が引けて、異なる2点$\mathrm{A}(\alpha,f(\alpha)),\mathrm{B}(\beta,f(\beta))$が接点となる。また$f(x)$の4次の係数は1である。このとき、$\displaystyle\frac{d^3}{dx^3}f(x)=0$の解を$x=\gamma$$\mathrm{C}(\gamma,f(\gamma))$、複接線を$l_1$、直線$\mathrm{PQ}$$l_2$$C$上の点$\mathrm{C}$における接線を$l_3$$l_2$$C$の交点のうち$\mathrm{P},\mathrm{Q}$と異なる点をそれぞれ$\mathrm{R},\mathrm{S}$$l_3$$C$の交点のうち$\mathrm{C}$と異なる点をそれぞれ$\mathrm{D},\mathrm{E}$とおく。ただし$x$座標について、$\mathrm{A}$より$\mathrm{B}$$\mathrm{P}$より$\mathrm{Q}$$\mathrm{R}$より$\mathrm{S}$$\mathrm{D}$より$\mathrm{E}$の方が大きいとする。

(1)直線$l_1,l_2,l_3$は互いに平行であることを示せ。

(2)線分長の2乗比$\mathrm{AB}^2:\mathrm{PQ}^2$を求めよ。

(3)線分長の2乗比$\mathrm{RS}^2:\mathrm{DE}^2$を求めよ。

(4)直線$l_2$$C$で囲まれる部分の面積$S$$\alpha,\beta$で表わせ。

投稿日:202167

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。

投稿者

Tokyo Tech 22B理学院 作問サークル(非公式)所属。 主に高校数学の自作問題を投稿します。 まれに問題の解答例、解説を書くこともあります。

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中