$$\newcommand{BA}[0]{\begin{align*}}
\newcommand{BE}[0]{\begin{equation}}
\newcommand{bl}[0]{\boldsymbol}
\newcommand{D}[0]{\displaystyle}
\newcommand{EA}[0]{\end{align*}}
\newcommand{EE}[0]{\end{equation}}
\newcommand{h}[0]{\boldsymbol{h}}
\newcommand{k}[0]{\boldsymbol{k}}
\newcommand{L}[0]{\left}
\newcommand{l}[0]{\boldsymbol{l}}
\newcommand{m}[0]{\boldsymbol{m}}
\newcommand{n}[0]{\boldsymbol{n}}
\newcommand{R}[0]{\right}
$$
$\Large ðžððððððððððð$
ã${\rm Almkvist}$, ${\rm Borwein}$, ${\rm Bradley}$, ${\rm Granville}$, ${\rm Koecher}$, ${\rm Leshchiner}$,${\rm Rivoal}$ãšãã£ãã²ãšãã¡ã¯ïŒãŒãŒã¿å€ã«åæãããããªåæãéãçŽæ°ãäžããŠããŸãã
äŸãã°ïŒ${\rm Koecher's~ formula}$
\begin{align*}
\sum_{n=0}^\infty x^{2n}\zeta(2n+3)
=\sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^3\binom{2n}{n}}\L(\frac{1}{2}+\frac{2}{1-\frac{x^2}{n^2}}\R)\prod_{k=1}^{n-1}\L(1-\frac{x^2}{k^2}\R)
\end{align*}
ãïŒ$\textrm{Bailey-Borwein-Bladley}~\rm formula$
\begin{align*}
\sum_{n=0}^\infty x^{2n}\zeta(2n+2)=3\sum_{n=1}^\infty \frac{1}{\binom{2n}{n}(n^2-x^2)}\prod_{k=1}^{n-1}\frac{k^2-4x^2}{k^2-x^2}
\end{align*}
ãšãããã®ããããŸãã
${\rm Khodabakhsh}$ãš${\rm Tatiana~ Hessami~ Pilehrood}$ã¯ïŒ${\rm WZ~ method }$ãçšããŠãã®ãããªçåŒã蚌æããŸããããããã®ãŒãŒã¿å€å
¬åŒã®${\rm WZ~ method }$ã«ãã蚌æã¯ïŒã©ã®ããã«ããŠè¶
幟äœçŽæ°ãšé¢ä¿ããŠããã®ã§ããããããŸããã®é¢é£æ§ã«ãã£ãŠã©ã®ããã«äžè¬åããããšãã§ããã§ããããã
$\small ðð¡ð~ðð~ðŠððð¡ðšð $
ã次ã®ãããªïŒæ¹åæ§ãæã€åæ Œå蟺ã«éã¿ãä»ããæ Œåã°ã©ããèããŸãã
ã©ã®äºç¹éã«ãããŠãçµè·¯ã®éã¿ãäžèŽããããã«èšå®ããŸã(çµè·¯äžå€æ§)ããŸãïŒãã®ãããªæ§è³ªãæã€æ Œåã°ã©ãã$\rm PiGG$ãšåŒã¶ããšã«ããŸãã
$\rm PiGG$ã§ããããšã確ãããã«ã¯ïŒåæ Œåã«ã€ããŠèããã°ååã§ãã
é£ãåããªãé ç¹ã©ãããæ°ãã«çµã¶ããšã§ïŒåãç¹éåã«å¥ã®æ Œåãäžããããšãã§ããŸãããããŠãã®æ Œåã°ã©ãã¯çµè·¯äžå€æ§ãæã¡ãŸãã
ããŸïŒåé ç¹ã$\mathbb ZÃ\mathbb Z$äžã«ãã$\rm PiGG$ããããšããŸãããŸãïŒ$(i,j)$ãã$(i+1,j)$ãŸã§ã®éã¿ã$F(i,j)$ïŒ$(i,j)$ãã$(i,j+1)$ãŸã§ã®éã¿ã$G(i,j)$ãšããŸãã
çµè·¯äžå€æ§ãåŒã§è¡šãã°
\begin{align*}
F(i,j)+G(i+1,j)=G(i,j)+F(i,j+1)
\end{align*}
ãšãªããŸãããã®çåŒãæºãã$F,G$ã®çµã${\textrm{WZ-pair}}$ãšåŒã³ãŸãã
åé ã®çåã«å¯ŸããŠïŒ$F,G$ãç¹å®ã®åœ¢
\begin{align*}
\frac{\Gamma(a_1 i+b_1 j+v_1)\cdots\Gamma(a_r i+b_r j+v_r)}{\Gamma(c_1 i+d_1 j+w_1)\cdots\Gamma(c_s i+d_s j+w_s)}X^iY^j
\end{align*}
ãæã£ãŠããããšããããã§ããããã§$a_n,b_n,c_n,d_n$ã¯æŽæ°ïŒ$v_n,w_n,X,Y$ã¯è€çŽ æ°ãšããŠããŸãã
ãŸãïŒãã®åœ¢ã§è¡šãããšãã§ãããšããããšã¯ïŒ$\frac{F(i+1,j)}{F(i,j)},\frac{F(i,j+1)}{F(i,j)},\frac{F(i,j)}{G(i,j)}$ãæçé¢æ°ã«ãªãããšã瀺ããŠããŸãã
ãã®æ Œåã°ã©ãã§ããïŒæ Œåã®é ç¹ã®åº§æšã¯æŽæ°ã§ãªããŠãè¯ãããšã«æ³šæããŠãã ããããããŸã§æ Œå蟺ã®é·ããæŽæ°ã§ããã°æ Œåã°ã©ãã圢æããããšããã®ãæ¬è³ªã§ãã
$\small {\rm Binomial~theorem}$
ã$F,G$ã次ã®ããã«å®çŸ©ããŸãã
\begin{align*}
&F(i,j)=\frac{\Gamma(i+j+2)}{\Gamma(i+2)\Gamma(j+1)}x^i(1-x)^j=\binom{i+j+1}{j}x^i(1-x)^j \\
&G(i,j)=-\frac{\Gamma(i+j+2)}{\Gamma(i+1)\Gamma(j+2)}x^i(1-x)^j=-\binom{i+j+1}{i}x^i(1-x)^j
\end{align*}
$F(i,j)+G(i+1,j)=G(i,j)+F(i,j+1)$ãæãç«ã€ã®ã§$(F,G)$ã¯${\textrm{WZ-pair}}$ã§ãã
次ã®æ ŒåãèããŸãã
çµè·¯$P$ã§åããšããš
\begin{align*}
\sum_{i=0}^{m-1}F(i,0)+\sum_{j=0}^{n-1}G(m,j)=\frac{1-x^m}{1-x}-\sum_{j=0}^{n-1}\binom{j+m+1}{m}x^m(1-x)^j
\end{align*}
çµè·¯$Q$ã§åããšããš
\begin{align*}
\sum_{j=0}^{n-1}G(0,j)+\sum_{i=0}^{m-1}F(i,n)=-\frac{1-(1-x)^n}{x}+\sum_{i=0}^{m-1}\binom{i+n+1}{n}x^i(1-x)^n
\end{align*}
ãšãªããŸãã
ãã£ãŠïŒ
\begin{align*}
\frac{1-x^m}{1-x}-\sum_{j=0}^{n-1}\binom{j+m+1}{m}x^m(1-x)^j=-\frac{1-(1-x)^n}{x}+\sum_{i=0}^{m-1}\binom{i+n+1}{n}x^i(1-x)^n
\end{align*}
ãšããçåŒãåŸãŸããããŸïŒ$m\to\infty$ãšããã°
\begin{align*}
\frac{1-0}{1-x}-0=-\frac{1-(1-x)^n}{x}+\sum_{i=0}^{\infty}\binom{i+n+1}{n}x^i(1-x)^n
\end{align*}
ããªãã¡
\begin{align*}
\sum_{i=0}^{\infty}\binom{i+n+1}{n}x^i(1-x)^n=\frac{1}{1-x}+\frac{1-(1-x)^n}{x}
\end{align*}
ãšãªããŸãã
$\small {\rm Shadowing}$
ãåè¿°ã®${\textrm{WZ-pair}}$ã修食ããã«ã¯ã©ãããã°ããã§ãããããããã§ïŒæ¬¡ã®å®çãçšããŸãã
${\rm Lemma.}$
ã$(F(i,j),G(i,j))$ã${\textrm{WZ-pair}}$ãªãã°ïŒ$F,G$ãåæãããããªä»»æã®è€çŽ æ°$\alpha,\beta$ã«å¯ŸããŠ$(F(i+\alpha,j+\beta),G(i+\alpha,j+\beta))$ã¯${\textrm{WZ-pair}}$ã§ããïŒ
ããã«ããïŒ
\begin{align*}
&F(i,j)=\frac{\Gamma(i+j+\alpha)}{\Gamma(i+1+\alpha)\Gamma(j)}x^i(1-x)^j \\
&G(i,j)=-\frac{\Gamma(i+j+\alpha)}{\Gamma(i+\alpha)\Gamma(j+1)}x^i(1-x)^j
\end{align*}
ã${\textrm{WZ-pair}}$ãšããããŸããããŸïŒ$(0,0)$ãã$(m,0)$ãŸã§ã®éã¿
\begin{align*}
\sum_{i=0}^{m-1}F(i,0)
\end{align*}
ãèãããšãïŒ
\begin{align*}
F(i,0)=\frac{\Gamma(i+\alpha)}{\Gamma(i+1+\alpha)\Gamma(0)}x^i
\end{align*}
ãšãªãïŒåæ¯ã«$\Gamma(0)$ãåºçŸããŸããããã§ïŒ$F,G$ã«åšæ$1$ã®
\begin{align*}
e(j)=(-1)^j\Gamma(j)\Gamma(1-j)=\frac{\pi(-1)^j}{\sin \pi j}
\end{align*}
ãæããã°ïŒ$(e(j)F(i,j),e(j)G(i,j))$ã¯${\textrm{WZ-pair}}$ãšãªããŸããããã${\rm Shadowing}$ãšãããŸãã
ããªãã¡ïŒ
\begin{align*}
&F(i,j)=\frac{\Gamma(i+j+\alpha)\Gamma(1-j)}{\Gamma(i+1+\alpha)}x^i(x-1)^j \\
&G(i,j)=\frac{\Gamma(i+j+\alpha)\Gamma(-j)}{\Gamma(i+\alpha)}x^i(x-1)^j
\end{align*}
ãšæ¹ããŸãã
${\rm Three~Paths~Way~1}$
ã次ã®çµè·¯ãèããŸãã
èµ€ã®çµè·¯ãšç·ã®çµè·¯ã®éã¿ã足ãåããããšïŒéã®çµè·¯ã®éã¿ãšçãããªããŸãããŸãïŒéçµè·¯ãšç·çµè·¯ã¯ãããã暪軞ãšçžŠè»žã«æ²¿ã£ãŠé²ã¿ãŸãã
蚌æã¯çããŸããïŒãã®çµè·¯ã§$n\to\infty$ãšããã°ïŒç·ã®éã¿ã¯$0$ã«ãªããŸãã
ããŸïŒèµ€çµè·¯äžã§$(0,0)$ã«æãè¿ãæ Œåç¹ã$(p,-q)$ãšãïŒ$(kp,-kq)\to ((k+1)p,-(k+1)q)$ã®éã¿ã$H_{p,q}(k)$ãšããŸãã
ãã®ãšãïŒ
\begin{align*}
\sum_{i=0}^\infty F(i,0)=\sum_{k=0}^\infty H_{p,q}(k)
\end{align*}
ã§ããïŒ$H_{p,q}(k)$ã¯
\begin{align*}
H_{p,q}(k)
&=\sum_{i=kp}^{(k+1)p-1}F(i,-(k+1)q)-\sum_{j=-(k+1)q}^{-kq-1}G(kp,j)\\
&=\sum_{i=0}^{p-1}F(i+kp,-(k+1)q)-\sum_{j=0}^{q-1}G(kp,j-(k+1)q)
\end{align*}
ãšãªããŸãã$\D F(i,0)=\frac{x^i}{i+\alpha}~$ã§ãã$H_{p,q}(k)$ã¯ã©ããªãã§ããããã
äžè¬ã®$H_{p,q}(k)$ãæ±ããã®ã¯å°é£ãããããŸãããïŒå
·äœçãª$p,q$ã«å¯ŸããŠèšç®ããŠã¿ãŸãã
\begin{align*}
\qquad H_{1,1}(k)
&=\sum_{i=0}^{0}F(i+k,-(k+1))-\sum_{j=0}^{0}G(k,j-(k+1))\\
&=F(k,-(k+1))-G(k,-(k+1))\\
&=\frac{\Gamma(-1+\alpha)\Gamma(k+2)}{\Gamma(k+\alpha+1)}x^k(x-1)^{-k-1}-\frac{\Gamma(-1+\alpha)\Gamma(k+1)}{\Gamma(k+\alpha)}x^k(x-1)^{-k-1}\\
&=\frac{\Gamma(-1+\alpha)k!}{\Gamma(k+\alpha+1)}x^k(x-1)^{-k-1}(k+1-(k+\alpha))\\
&=-\frac{\Gamma(\alpha)k!}{\Gamma(k+\alpha+1)}x^k(x-1)^{-k-1}\\
&=\frac{1}{\alpha(1-x)}\frac{k!}{(1+\alpha)_k}\L(\frac{x}{x-1}\R)^k
\end{align*}
\begin{align*}
\qquad H_{2,1}(k)
&=\sum_{i=0}^{1}F(i+2k,-(k+1))-\sum_{j=0}^{0}G(2k,j-(k+1))\\
&=F(2k,-(k+1))+F(2k+1,-(k+1))-G(2k,-(k+1))\\
&=\frac{\Gamma(k+\alpha-1)\Gamma(k+2)}{\Gamma(2k+\alpha+1)}x^{2k}(x-1)^{-k-1}+\frac{\Gamma(k+\alpha)\Gamma(k+2)}{\Gamma(2k+\alpha+2)}x^{2k+1}(x-1)^{-k-1}-\frac{\Gamma(k+\alpha-1)\Gamma(k+1)}{\Gamma(2k+\alpha)}x^{2k}(x-1)^{-k-1}\\
&=\frac{\Gamma(k+\alpha-1)k!}{\Gamma(2k+\alpha+2)}x^{2k}(x-1)^{-k-1}((k+1)(2k+\alpha+1)+(k+1)(k+\alpha-1)x-(2k+\alpha)(2k+\alpha+1))\\
&=\frac{\Gamma(k+\alpha-1)k!}{\Gamma(2k+\alpha+2)}x^{2k}(x-1)^{-k-1}((k+1-(2k+\alpha))(2k+\alpha+1)+(k+1)(k+\alpha-1)x)\\
&=\frac{\Gamma(k+\alpha-1)k!}{\Gamma(2k+\alpha+2)}x^{2k}(x-1)^{-k-1}((-k-\alpha+1)(2k+\alpha+1)+(k+1)(k+\alpha-1)x)\\
&=-\frac{\Gamma(k+\alpha)k!}{\Gamma(2k+\alpha+2)}x^{2k}(x-1)^{-k-1}((2k+\alpha+1)-(k+1)x)\\
&=\frac{1}{\alpha(1+\alpha)(1-x)}((2-x)k+1-x+\alpha)\frac{(\alpha)_k k!}{(2+\alpha)_{2k}}\L(\frac{x^2}{x-1}\R)^k
\end{align*}
\begin{align*}
\qquad H_{1,2}(k)
&=\sum_{i=0}^{0}F(i+k,-2(k+1))-\sum_{j=0}^{1}G(k,j-2(k+1))\\
&=F(k,-(2k+2))-G(k,-(2k+2))-G(k,-(2k+1))\\
&=\frac{\Gamma(-k+\alpha-2)\Gamma(2k+3)}{\Gamma(k+\alpha+1)}
x^k(x-1)^{-2k-2}
-\frac{\Gamma(-k+\alpha-2)\Gamma(2k+2)}{\Gamma(k+\alpha)}
x^k(x-1)^{-2k-2}
-\frac{\Gamma(-k+\alpha-1)\Gamma(2k+1)}{\Gamma(k+\alpha)}
x^k(x-1)^{-2k-1}\\
&=\frac{\Gamma(-k+\alpha-2)(2k)!}{\Gamma(k+\alpha+1)}x^k(x-1)^{-2k-2}((2k+1)(2k+2)-(2k+1)(k+\alpha)-(-k+\alpha-2)(k+\alpha)(x-1))\\
&=\frac{\Gamma(-k+\alpha-2)(2k)!}{\Gamma(k+\alpha+1)}x^k(x-1)^{-2k-2}((2k+1)(k-\alpha+2)-(-k+\alpha-2)(k+\alpha)(x-1))\\
&=-\frac{\Gamma(-k+\alpha-1)(2k)!}{\Gamma(k+\alpha+1)}x^k(x-1)^{-2k-2}(2k+1+(k+\alpha)(x-1))\\
&=-\frac{\Gamma(\alpha-1)}{\Gamma(1+\alpha)}((1+x)k+1+\alpha(x-1))\frac{(\alpha-1)_{-k}(2k)!}{(1+\alpha)_k}\L(\frac{x}{(1-x)^2}\R)^k\frac{1}{(1-x)^2}\\
&=\frac{1}{\alpha(1-\alpha)(1-x)^2}((1+x)k+1+\alpha(x-1))\frac{(2k)!}{(1+\alpha)_k(2-\alpha)_k}\L(\frac{-x}{(1-x)^2}\R)^k\\
\end{align*}
\begin{align*}
\qquad H_{2,2}(k)
&=\sum_{i=0}^{1}F(i+2k,-2(k+1))-\sum_{j=0}^{1}G(2k,j-2(k+1))\\
&=F(2k,-(2k+2))+F(2k+1,-(2k+2))-G(2k,-(2k+2))-G(2k,-(2k+1))\\
&=\frac{\Gamma(\alpha-2)\Gamma(2k+3)}{\Gamma(2k+\alpha+1)}
x^{2k}(x-1)^{-2k-2}
+\frac{\Gamma(\alpha-1)\Gamma(2k+3)}{\Gamma(2k+\alpha+2)}
x^{2k+1}(x-1)^{-2k-2}
-\frac{\Gamma(\alpha-2)\Gamma(2k+2)}{\Gamma(2k+\alpha)}
x^{2k}(x-1)^{-2k-2}
-\frac{\Gamma(\alpha-1)\Gamma(2k+1)}{\Gamma(2k+\alpha)}
x^{2k}(x-1)^{-2k-1}\\
&=\frac{\Gamma(\alpha-2)(2k)!}{\Gamma(2k+\alpha+2)}x^{2k}(x-1)^{-2k-2}
((2k+1)(2k+2)(2k+\alpha+1)+(\alpha-2)(2k+1)(2k+2)x-(2k+1)(2k+\alpha)(2k+\alpha+1)-(\alpha-2)(2k+\alpha)(2k+\alpha+1)(x-1))\\
&=\frac{\Gamma(\alpha-2)(2k)!}{\Gamma(2k+\alpha+2)}x^{2k}(x-1)^{-2k-2}
((2k+1)(2k+\alpha+1)(2-\alpha)+(\alpha-2)(2k+\alpha)(2k+\alpha+1)+(\alpha-2)((2k+1)(2k+2)-(2k+\alpha)(2k+\alpha+1))x)\\
&=\frac{\Gamma(\alpha-2)(2k)!}{\Gamma(2k+\alpha+2)}x^{2k}(x-1)^{-2k-2}
((\alpha-2)(\alpha-1)(2k+\alpha+1)+(\alpha-2)((2k+1)(2k+2)-(2k+\alpha)(2k+\alpha+1))x)\\
&=\frac{\Gamma(\alpha-1)(2k)!}{\Gamma(2k+\alpha+2)}x^{2k}(x-1)^{-2k-2}
((\alpha-1)(2k+\alpha+1)+(1-\alpha)(4k+\alpha+2)x)\\
&=\frac{\Gamma(\alpha)(2k)!}{\Gamma(2k+\alpha+2)}x^{2k}(x-1)^{-2k-2}
(2k+\alpha+1-(4k+\alpha+2)x)\\
&=\frac{\Gamma(\alpha)}{\Gamma(2+\alpha)}(2k+\alpha+1-(4k+\alpha+2)x)\frac{(2k)!}{(2+\alpha)_{2k}}\L(\frac{x}{x-1}\R)^{2k}\frac{1}{(1-x)^2}\\
&=\frac{1}{\alpha(1+\alpha)(1-x)^2}(2(1-2x)k+(1-x)(2+\alpha)-1)\frac{(2k)!}{(2+\alpha)_{2k}}\L(\frac{x}{1-x}\R)^{2k}
\end{align*}
ãã®ããã«ãªããŸãããŸãšãããš
<p style=" margin: 0; padding: 0; "\begin{align*}
\sum_{n=0}^\infty \frac{x^n}{n+\alpha}
&=\frac{1}{\alpha(1-x)}\sum_{n=0}^\infty \frac{n!}{(1+\alpha)_n}\L(\frac{x}{x-1}\R)^n\\
&=\frac{1}{\alpha(1+\alpha)(1-x)}\sum_{n=0}^\infty ((2-x)n+1-x+\alpha)\frac{(\alpha)_n n!}{(2+\alpha)_{2n}}\L(\frac{x^2}{x-1}\R)^n\\
&=\frac{1}{\alpha(1-\alpha)(1-x)^2}\sum_{n=0}^\infty ((1+x)n+1+\alpha(x-1))\frac{(2n)!}{(1+\alpha)_n(2-\alpha)_n}\L(\frac{-x}{(1-x)^2}\R)^n\\
&=\frac{1}{\alpha(1+\alpha)(1-x)^2}\sum_{n=0}^\infty (2(1-2x)n+(1-x)(2+\alpha)-1)\frac{(2n)!}{(2+\alpha)_{2n}}\L(\frac{x}{1-x}\R)^{2n}
\end{align*}
ãšãªããŸãã
äŸãã°ïŒè¡ç®ã®åŒã«ãããŠïŒ$\alpha$ã§åŸ®åã$x=-1,\alpha=1$ã代å
¥ãããš
\begin{align*}
\sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^2}
=\sum_{n=1}^\infty \frac{(-1)^{n-1}}{2^nn\binom{2n}{n}}\L(\frac{2}{n}+3(H_{2n}-H_n)\R)
\end{align*}
ãšããåŒãåŸãããŸãã
${\rm Three~Paths~Way~2}$
ã${\textrm{WZ-pair}}$
\begin{align*}
&F(i,j)=\frac{H(i,j)}{i}\\
&G(i,j)=-\frac{H(i,j)}{j}\\
&H(i,j)=\frac{\Gamma(i+j)}{\Gamma(i)\Gamma(j)}z^i(1-z)^jãã\L(0< z<\frac{1}{2}\R)
\end{align*}
ã«å¯ŸããŠïŒæ¬¡ã®çµè·¯ãèããŸãã
åè¿°ãšåæ§ã«ïŒ$n\to\infty$ã«ãããŠç·ã®éã¿ã¯$0$ã«åæããŸãã
èµ€ã®çµè·¯äžã§$(s,t)$ã«æãè¿ãæ Œåç¹ã$(s+p,t+q)$ãšãïŒ$(s+kp,t+kq)\to (s+(k+1)p,t+(k+1)q)$ã®éã¿ã$H_{p,q}(k)$ãšããŸãã
ãã®ãšãïŒ
\begin{align*}
\sum_{m=0}^\infty F(s+m,t)=\sum_{k=0}^\infty H_{p,q}(k)
\end{align*}
ã§ããïŒ$H_{p,q}(k)$ã¯
\begin{align*}
H_{p,q}(k)
&=\sum_{n=0}^{p-1}F(s+kp+n,t+kq)+\sum_{n=0}^{q-1}G(s+(k+1)p,t+kq+n)\\
\end{align*}
ãšãªããŸããå®éã«$H_{p,q}(k)ãèšç®ãããš$
\begin{align*}
H_{1,1}(k)&=\frac{\Gamma(s+t-2)}{\Gamma(s)\Gamma(t)}
(A_{1,1}+B_{1,1}(k+1))
\frac{(s+t-2)_{2k+2}}{(s)_{k+1}(t)_{k+1}}z^{s+k}(1-z)^{t+k}\\
H_{2,1}(k)&=\frac{\Gamma(s+t-2)}{\Gamma(s)\Gamma(t)}
(A_{2,1}+B_{2,1}(k+1)+C_{2,1}(k+1)^2)
\frac{(s+t-2)_{3k+2}}{(s)_{2k+2}(t)_{k+1}}z^{s+2k}(1-z)^{t+k}\\
H_{1,2}(k)&=\frac{\Gamma(s+t-2)}{\Gamma(s)\Gamma(t)}
(A_{1,2}+B_{1,2}(k+1)+C_{1,2}(k+1)^2)
\frac{(s+t-2)_{3k+2}}{(s)_{k+1}(t)_{2k+2}}z^{s+k}(1-z)^{t+2k}
\end{align*}
\begin{align*}
\begin{pmatrix}A_{1,1}\\B_{1,1}\end{pmatrix}
&=\begin{pmatrix}t-1-(s+t-2)z\\1-2z\end{pmatrix}\\
\begin{pmatrix}A_{2,1}\\B_{2,1}\\C_{2,1} \end{pmatrix}
&=\begin{pmatrix}(s-1)(t-1)-(3-s-t)(t-1)z+(s+t-2)(3-s-t)z^2 \\
s+2t-3-(6-s-4t)z+3(5-2s-2t)z^2\\
(1+3z)(2-3z)
\end{pmatrix}\\
\begin{pmatrix}A_{1,2}\\B_{1,2}\\C_{1,2}\end{pmatrix}
&=\begin{pmatrix}-(t-1)(2-t)+(3-s-t)(s+2t-3)z-(s+t-2)(3-s-t)z^2\\
-2(3-2t)+(24-8s-11t)z-3(5-2s-2t)z^2\\
(1-3z)(2-3z)
\end{pmatrix}
\end{align*}
ãšãªããŸãã$s,t$ã«$1$ã足ãïŒ$F,H$ã®åã$1$ãããšãããã«èª¿æŽãããš
\begin{align*}
(s+t)\sum_{m=1}^\infty \frac{(1+s+t)_n}{(1+s)_n}z^{n-1}
&=\sum_{k=1}^\infty (A'_{1,1}+B'_{1,1}k)\frac{(s+t)_{2k}}{(1+s)_k(1+t)_k}z^{k-1}(1-z)^{k-1}\\
&=\sum_{k=1}^\infty (A'_{2,1}+B'_{2,1}k+C'_{2,1}k^2)\frac{(s+t)_{3k-1}}{(1+s)_{2k}(1+t)_k}z^{2k-2}(1-z)^{k-1}\\
&=\sum_{k=1}^\infty (A'_{1,2}+B'_{1,2}k+C'_{1,2}k^2)\frac{(s+t)_{3k-1}}{(1+s)_k(1+t)_{2k}}z^{k-1}(1-z)^{2k-2}\\
\end{align*}
\begin{align*}
\begin{pmatrix}A'_{1,1}\\B'_{1,1}\end{pmatrix}
&=\begin{pmatrix}t-(s+t)z\\1-2z\end{pmatrix}\\
\begin{pmatrix}A'_{2,1}\\B'_{2,1}\\C'_{2,1} \end{pmatrix}
&=\begin{pmatrix}st-t(1-s-t)z+(s+t)(1-s-t)z^2 \\
s+2t-(1-s-4t)z+3(1-2s-2t)z^2\\
(1+3z)(2-3z)
\end{pmatrix}\\
\begin{pmatrix}A'_{1,2}\\B'_{1,2}\\C'_{1,2}\end{pmatrix}
&=\begin{pmatrix}-t(1-t)+(1-s-t)(s+2t)z-(s+t)(1-s-t)z^2\\
-2(1-2t)+(5-8s-11t)z-3(1-2s-2t)z^2\\
(1-3z)(2-3z)
\end{pmatrix}
\end{align*}
$z^s(1-z)^t$ãé€ããã®ã§ïŒ$z$ãè² ã«æ¡åŒµã§ããŸãããã¹ãŠã®çåŒãæãç«ã€ã«ã¯ããçã
\begin{align*}
-\frac{1}{3}\L(2-(-1+\sqrt{2})^{-\frac{2}{3}}-(-1+\sqrt{2})^{\frac{2}{3}}\R)\le z<\frac{1}{3}
\end{align*}
ã§ããå¿
èŠããããŸãã
${\rm telescoping~sum}$
ãçµè·¯äžå€æ§
\begin{align*}
F(i,j)-F(i,j+1)=G(i,j)-G(i+1,j)
\end{align*}
ã«ãããŠïŒ$j$ã«$j+1,j+2,\cdots,j+m$ã代å
¥ãããã®ã蟺蟺足ãåããããš
\begin{align*}
F(i,j)-F(i,j+m+1)=\sum_{n=0}^m(G(i,j+n)-G(i+1,j+n))
\end{align*}
ãšãªããŸããããŸ$F(i,\infty)=0$ãšä»®å®ããã°
\begin{align*}
F(i,j)=\sum_{n=0}^\infty (G(i,j+n)-G(i+1,j+n))
\end{align*}
ãšãªããŸãã
åæ§ã«ïŒ$i$ã«$i+1,i+2,\cdots,i+m$ã代å
¥ããŠ
\begin{align*}
\sum_{n=0}^m(F(i+n,j)-F(i+n,j+1))=G(i,j)-G(i+m+1,j)
\end{align*}
ãšãªãïŒ$G(\infty,j)=0$ãšããã°
\begin{align*}
\sum_{n=0}^\infty (F(i+n,j)-F(i+n,j+1))=G(i,j)
\end{align*}
ãšãªããŸããããããããã«$j$ã«$j+1,j+2,\cdots,j+m$ã代å
¥ããŠè¶³ãåãããã°
\begin{align*}
\sum_{n=0}^\infty (F(i+n,j)-F(i+n,j+m+1))=\sum_{n=0}^mG(i,j+n)
\end{align*}
ãšãªãïŒ$\D\lim_{m\to\infty}\sum_{n=0}^\infty F(i+n,j+m)=0$ãšä»®å®ããã°
\begin{align*}
\sum_{n=0}^\infty F(i+n,j)=\sum_{n=0}^\infty G(i,j+n)
\end{align*}
ãšãªããŸãã
$\textrm{Markov-WZ}\rm~method$
ãäžè¬ã«$\rm hypergeometric~term$ãšããŠã®${\textrm{WZ-pair}}$ãèŠã€ããããšã¯ïŒç§ã«ãšã£ãŠã¯é£ãããã®ã§ãããããïŒãã®$\rm term$ã«ãã©ã¡ãŒã¿ã®å€é
åŒãæãããã®ãèŠã€ããããã®ã¢ã«ãŽãªãºã ãããïŒããã«ããåçãšããŠã¯å®¹æã«${\textrm{WZ-pair}}$ãèŠã€ããããšãã§ããŸããã
ããã®ã¢ã«ãŽãªãºã ã¯
ïŒïŒ$m,n$ã®é¢æ°$H(m,n)$ãããããŒã«æ±ºãã
ïŒïŒ$\BA F(m,n)&=(A_0(n)+mA_1(n)+\cdots+m^pA_p(n))H(m,n)\\
G(m,n)&=(B_0(n)+mB_1(n)+\cdots+m^qB_q(n))H(m,n)\EA$ãšå®çŸ©ãã
ïŒïŒ$F(m,n)-F(m,n+1)=G(m,n)-G(m+1,n)$ã«ä»£å
¥ãïŒ$(m+1)^r$ã®ä¿æ°æ¯èŒãã$A_1(n),\cdots,B_q(n)$ãæ±ãã
ã§ããç¡éçŽæ°ãšããŠã®çåŒãåŸãããšãããšãã¯ïŒ$F(\infty,x)$ã$G(x,\infty)$ãªã©ãããŸã$0$ã«åæããããã«$H(m,n)$ã決å®ããå¿
èŠããããŸãã
å
·äœäŸã§èšç®ããŠã¿ãŸãã
ãŸã
\begin{align*}
H(m,n)=\L(\frac{m!n!}{(m+n)!}\R)^2
\end{align*}
ãšå®çŸ©ãïŒ
\begin{align*}
F(m,n)&=A(n)H(m,n)\\
G(m,n)&=\big(B(n)+mC(n)\big)H(m,n)
\end{align*}
ãšå®çŸ©ããŸãã
ãã®ãšã
\begin{align*}
F(m,n)-F(m,n+1)
&=A(n)H(m,n)-A(n+1)H(m,n+1)\\
&=A(n)H(m,n)-A(n+1)\frac{(n+1)^2}{(m+n+1)^2}H(m,n)\\
&=\Big((m+n+1)^2A(n)-(n+1)^2A(n+1)\Big)\frac{H(m,n)}{(m+n+1)^2}\\
&=\Big(n^2A(n)-(n+1)^2A(n+1)+2(m+1)nA(n)+(m+1)^2A(n)\Big)\frac{H(m,n)}{(m+n+1)^2}
\end{align*}
ãŸã
\begin{align*}\qquad
G(m,n)-G(m+1,n)
&=\big(B(n)+mC(n)\big)H(m,n)-\big(B(n)+(m+1)C(n)\big)H(m+1,n)\\
&=\big(B(n)-C(n)+(m+1)C(n)\big)H(m,n)-\big(B(n)+(m+1)C(n)\big)\frac{(m+1)^2}{(m+n+1)^2}H(m,n)\\
&=\Big((m+n+1)^2\big(B(n)-C(n)+(m+1)C(n)\big)-(m+1)^2\big(B(n)+(m+1)C(n)\big)\Big)\frac{H(m,n)}{(m+n+1)^2}\\
&=\Big(\big(n^2+2(m+1)n+(m+1)^2\big)\big(B(n)-C(n)+(m+1)C(n)\big)-(m+1)^2B(n)-(m+1)^3C(n)\Big)\frac{H(m,n)}{(m+n+1)^2}\\
&=\Big(n^2\big(B(n)-C(n)\big)+\big(2n(B(n)-C(n))+n^2C(n)\big)(m+1)+\big(B(n)-C(n)+2nC(n)\big)(m+1)^2+(m+1)^3C(n)-(m+1)^2B(n)-(m+1)^3C(n)\Big)\frac{H(m,n)}{(m+n+1)^2}\\
&=\Big(n^2B(n)-n^2C(n)+\big(2nB(n)+(n^2-2n)C(n)\big)(m+1)+(m+1)^2(2n-1)C(n)\Big)\frac{H(m,n)}{(m+n+1)^2}
\end{align*}
ãšãªããŸããä¿æ°æ¯èŒã«ãã
\begin{align*}
\begin{cases}
&n^2A(n)-(n+1)^2A(n+1)=n^2B(n)-n^2C(n)\\
&2nA(n)=2nB(n)+(n^2-2n)C(n)\\
&A(n)=(2n-1)C(n)
\end{cases}
\end{align*}
ãåŸãŸããããã解ããš
\begin{align*}
A(n)=\frac{2(2n-1)}{n^3\binom{2n}{n}}A(1)~,ãB(n)=\frac{3nA(n)}{2(2n-1)}~,ãC(n)=\frac{A(n)}{2n-1}
\end{align*}
ãšãªããŸãã$A(1)$ã¯$F$ãš$G$ã®æ¯ã«åœ±é¿ããªãã®ã§é©åœã«$1$ãšããŠããã§ãã
ããªãã¡ïŒ
\begin{align*}
F(m,n)&=\frac{2(2n-1)}{n^3\binom{2n}{n}}\L(\frac{m!n!}{(m+n)!}\R)^2\\
G(m,n)&=\frac{2m+3n}{n^3\binom{2n}{n}}\L(\frac{m!n!}{(m+n)!}\R)^2
\end{align*}
ã${\textrm{WZ-pair}}$ã§ããããšãããããŸããã
å®ã¯ãã®æ¹æ³ã¯$\textrm{Markov-WZ}\rm~method$ãšåŒã°ãããããã§ãã
ãã®${\textrm{WZ-pair}}$ã«å¯ŸããŠïŒ$\rm telescoping~sum$ãèãããšïŒ
\begin{align*}
\sum_{m=0}^\infty F(m+\alpha,\beta)=\sum_{n=0}^\infty G(\alpha,n+\beta)
\end{align*}
ããªãã¡
\begin{align*}
\sum_{m=0}^\infty \frac{(1+\alpha)_m^2}{(1+\alpha+\beta)_m^2}
=\frac{\beta^4\Gamma(\beta)}{2(2\beta-1)}\sum_{n=0}^\infty\frac{2\alpha+3\beta+3n}{(\beta+n)^3}\frac{(1+\beta)_n^4}{(1+2\beta)_{2n}(1+\alpha+\beta)_n^2}ãããããã\L(\beta>\frac{1}{2}\R)
\end{align*}
ãšãªããŸãã$\beta=1$ã®å Žåã¯
\begin{align*}
\sum_{n=1}^\infty \frac{1}{(n+\alpha)^2}=\sum_{n=1}^\infty\frac{3n+2\alpha}{n^3\binom{2n}{n}}\frac{n!^2}{(1+\alpha)_n^2}
\end{align*}
ãšãªããŸãã
ãŸãïŒ$\rm three~paths~way$ã«ãã
\begin{align*}
\sum_{n=0}^\infty F(n+\alpha,\beta)=\sum_{n=0}^\infty H_{p,q}(n)
\end{align*}
\begin{align*}
H_{p,q}(n)=\sum_{j=0}^{p-1}F(\alpha+pn+j,\beta+qn)+\sum_{k=0}^{q-1}G(\alpha+pn+p,\beta+qn+k)
\end{align*}
ãšãªãïŒå®éã«$H_{1,1}(n)$ãèšç®ãããš
\begin{align*}
H_{1,1}(n)=\frac{\Gamma^2(1+\alpha)\Gamma^4(1+\beta)}{\Gamma(1+2\beta)\Gamma^2(1+\alpha+\beta)}\frac{A+Bn+Cn^2+21n^3}{(\beta+n)^3}\frac{(1+\alpha)_n^2(1+\beta)_n^4}{(1+2\beta)_{2n}(1+\alpha+\beta)_{2n}^2}
\end{align*}
\begin{align*}
\begin{pmatrix}A\\B\\C\end{pmatrix}
=\begin{pmatrix}2(2\beta-1)(1+\alpha+\beta)^2+(2+2\alpha+3\beta)(1+\alpha)^2\\
8(2\beta-1)(1+\alpha+\beta)+4(1+\alpha+\beta)^2+2(2+2\alpha+3\beta)(1+\alpha)+5(1+\alpha)^2\\
8(2\beta-1)+16(1+\alpha+\beta)+10(1+\alpha)+2+2\alpha+3\beta
\end{pmatrix}
\end{align*}
ãšãªããŸããã$H_{1,2}(n),~H_{2,1}(n)$以éã¯èšç®éãå€ãããŠå¿ãæããŸããã
$\alpha$ãš$\beta$ã«å
·äœçãªæ°å€ã代å
¥ãããšå°ãèšç®ãããããªãã®ã§ïŒ$\alpha=0,~\beta=1$ã§èšç®ããŠã¿ããš
\begin{align*}
H_{1,1}(n-1)&=\frac{21n-8}{n^3\binom{2n}{n}^3}\\
H_{1,2}(n-1)&=\frac{145n^2-104n+18}{2n^3(2n-1)\binom{2n}{n}\binom{3n}{n}^2}\\
H_{2,1}(n-1)&=\frac{9}{4}\frac{80n^3-105n^2+44n-6}{n^2(2n-1)^3\binom{3n}{n}^2\binom{4n-2}{2n-1}}+\frac{1}{n^2\binom{3n}{n}^2\binom{4n}{2n}}\\
H_{2,2}(n-1)&=\frac{4(680n^5-1236n^4+846n^3-281n^2+46n-3)}{(2n-1)^5(4n-1)^2\binom{4n-2}{2n-1}\binom{4n}{2n}^2}+\frac{5}{4n^2\binom{4n}{2n}^3}
\end{align*}
$p+q$ã倧ãããªãã«ã€ããŠïŒåæãéããªããŸãã
ãªããšãããïŒã³ã³ãã¥ãŒã¿ãå
šéšèšç®ããŠãããã¿ãããªããšã¯ã§ããªãã®ã§ãããããæµç³ã«æèšç®ã¯ãããã§ããããã§ãããïŒ
\begin{align*}
H(m,n)=\L(\frac{m!n!}{(m+n)!}\R)^5
\end{align*}
ã®ãããªå Žåã®${\textrm{WZ-pair}}$ãã©ã®ãããªããã¡ã«ãªãããããããŸããã
${\rm parameterized}$
ãŸã
\begin{align*}
H(m,n)=\frac{\Gamma(a+m)\Gamma(b+m)}{\Gamma(c+m+n)\Gamma(d+m+n)}
\end{align*}
ãšå®çŸ©ããŸããããã«
\begin{align*}
&F(m,n)=A(n)H(m,n)\\
&G(m,n)=\big(B(n)+mC(n)\big)H(m,n)
\end{align*}
ãšå®çŸ©ããŸãã
\begin{align*}
F(m,n)-F(m,n+1)
&=A(n)H(m,n)-A(n+1)H(m,n+1)\\
&=A(n)H(m,n)-A(n+1)\frac{H(m,n)}{(c+m+n)(d+m+n)}\\
&=\big((c+m+n)(d+m+n)A(n)-A(n+1)\big)\frac{H(m,n)}{(c+m+n)(d+m+n)}\\
&=\big(m^2A(n)+(c+d+2n)mA(n)+(c+n)(d+n)A(n)-A(n+1)\big)\frac{H(m,n)}{(c+m+n)(d+m+n)}
\end{align*}
\begin{align*}\qquad\qquad
G(m,n)-G(m+1,n)
&=\big(B(n)+mC(n)\big)H(m,n)-\big(B(n)+(m+1)C(n)\big)\frac{(a+m)(b+m)H(m,n)}{(c+m+n)(d+m+n)}\\
&=\Big((c+m+n)(d+m+n)\big(B(n)+mC(n)\big)-(a+m)(b+m)\big(B(n)+(m+1)C(n)\big)\Big)\frac{H(m,n)}{(c+m+n)(d+m+n)}\\
&=\L(\begin{matrix}\big((c+n)(d+n)+(c+d+2n)m+m^2\big)\big(B(n)+mC(n)\big)\\
-\big(ab+(a+b)m+m^2\big)\big(B(n)+C(n)+mC(n)\big)\end{matrix}\R)\frac{H(m,n)}{(c+m+n)(d+m+n)}\\
&=\Big((c+d-a-b-1+2n)m^2C(n)+\big((c+d-a-b+2n)B(n)+((c+n)(d+n)-a-b-ab)\big)mC(n)+\big((c+n)(d+n)-ab\big)B(n)-abC(n)\Big)\frac{H(m,n)}{(c+m+n)(d+m+n)}
\end{align*}
ããªãã¡ïŒ$(F,G)$ã${\textrm{WZ-pair}}$ãšãªãããã«
\begin{align*}
\begin{cases}
A(n)=(c+d-a-b-1+2n)C(n)\\
(c+d+2n)A(n)=(c+d-a-b+2n)B(n)+\big((c+n)(d+n)-a-b-ab\big)C(n)\\
(c+n)(d+n)A(n)-A(n+1)=\big((c+n)(d+n)-ab\big)B(n)-abC(n)
\end{cases}
\end{align*}
ã解ããšïŒ
\begin{align*}
\begin{cases}\D
A(n)=\frac{(c-a)_n(c-b)_n(d-a)_n(d-b)_n}{(c+d-a-b-1)_{2n}}\\
\D B(n)=\frac{3n^2+pn+q}{(c+d-a-b-1+2n)(c+d-a-b+2n)}A(n)\qquad\L(\begin{matrix}p=3c+3d-2a-2b-2\\q=(c+d)(c+d-a-b-1)+a+b+ab-cd\end{matrix}\R) \\
\D C(n)=\frac{A(n)}{c+d-a-b-1+2n}\\
\end{cases}
\end{align*}
ãšãªããŸãã
ããã§
\begin{align*}\qquad\qquad
\sum_{m=0}^\infty F(m+\alpha,1+\beta)
&=\sum_{m=0}^\infty \frac{(c-a)_{1+\beta}(c-b)_{1+\beta}(d-a)_{1+\beta}(d-b)_{1+\beta}}{(c+d-a-b-1)_{2+2\beta}}\frac{\Gamma(a+\alpha+m)\Gamma(b+\alpha+m)}{\Gamma(1+c+\alpha+m)\Gamma(1+d+\alpha+m)}\\
&=\frac{\Gamma(c+d-a-b-1)\Gamma(c-a+1+\beta)\Gamma(c-b+1+\beta)\Gamma(d-a+1+\beta)\Gamma(d-b+1+\beta)\Gamma(a+\alpha)\Gamma(b+\alpha)}{\Gamma(c-a)\Gamma(c-b)\Gamma(d-a)\Gamma(d-b)\Gamma(c+d-a-b+1+2\beta)\Gamma(c+\alpha)\Gamma(d+\alpha)}\sum_{m=1}^\infty \frac{1}{(m-1+a+\alpha)(m-1+b+\alpha)}\frac{(a+\alpha)_m(b+\alpha)_m}{(c+\alpha)_m(d+\alpha)_m}
\end{align*}
ãŸã
\begin{align*}\qquad\qquad
\sum_{n=1}^\infty G(\alpha,n+\beta)
&=\sum_{n=1}^\infty \L(\frac{3(n+\beta)^2+p(n+\beta)+q}{(c+d-a-b-1+2\beta+2n)(c+d-a-b+2\beta+2n)}+\frac{\alpha}{c+d-a-b-1+2\beta+2n}\R)\frac{(c-a)_{n+\beta}(c-b)_{n+\beta}(d-a)_{n+\beta}(d-b)_{n+\beta}}{(c+d-a-b-1)_{2n+2\beta}}\frac{\Gamma(a+\alpha)\Gamma(b+\alpha)}{\Gamma(c+\alpha+\beta+n)\Gamma(d+\alpha+\beta+n)}\\
&=\frac{\Gamma(c-a+\beta)\Gamma(c-b+\beta)\Gamma(d-a+\beta)\Gamma(d-b+\beta)\Gamma(c+d-a-b-1)\Gamma(a+\alpha)\Gamma(b+\alpha)}{\Gamma(c-a)\Gamma(c-b)\Gamma(d-a)\Gamma(d-b)\Gamma(c+d-a-b+1+2\beta)\Gamma(c+\alpha+\beta)\Gamma(d+\alpha+\beta)}
\sum_{n=1}^\infty \big(3n^2+(2\alpha+6\beta+p)n+3\beta^2+p\beta+q+\alpha(c+d-a-b+2\beta)\big)
\frac{(c-a+\beta)_n(c-b+\beta)_n(d-a+\beta)_n(d-b+\beta)_n}{(c+d-a-b+1+2\beta)_{2n}(c+\alpha+\beta)_n(d+\alpha+\beta)_n}
\end{align*}
ãšãªãã®ã§
ã
\begin{align*}
&\sum_{m=1}^\infty \frac{1}{(m-1+a+\alpha)(m-1+b+\alpha)}\frac{(a+\alpha)_m(b+\alpha)_m}{(c+\alpha)_m(d+\alpha)_m}\\
=&\frac{\Gamma(c+\alpha)\Gamma(d+\alpha)}{\Gamma(c+\alpha+\beta)\Gamma(d+\alpha+\beta)}
\sum_{n=1}^\infty \big(3n^2+(2\alpha+6\beta+p)n+3\beta^2+p\beta+q+\alpha(c+d-a-b+2\beta)\big)
\frac{(1+c-a+\beta)_{n-1}(1+c-b+\beta)_{n-1}(1+d-a+\beta)_{n-1}(1+d-b+\beta)_{n-1}}{(c+d-a-b+1+2\beta)_{2n}(c+\alpha+\beta)_n(d+\alpha+\beta)_n}
\end{align*}
$(p=3c+3d-2a-2b-2,~q=(c+d)(c+d-a-b-1)+a+b+ab-cd)$
ã
$c=a,~d=b,~\alpha=\beta=0$ãšãããš$p=a+b-2,~q=0 $ãšãªã
\begin{align*}
\sum_{m=1}^\infty \frac{1}{(m-1+a)(m-1+b)}
=\sum_{n=1}^\infty \frac{3n+a+b-2}{n\binom{2n}{n}}\frac{(1+a-b)_{n-1}(1-a+b)_{n-1}}{(a)_n(b)_n}
\end{align*}
$a\to1-a,~b\to1-b$ãšããã°
\begin{align*}
\sum_{m=1}^\infty \frac{1}{(m-a)(m-b)}
=\sum_{n=1}^\infty \frac{3n-a-b}{n\binom{2n}{n}}\frac{(1+a-b)_{n-1}(1-a+b)_{n-1}}{(1-a)_n(1-b)_n}
\end{align*}
ããã«$b=-a$ãšããã°
\begin{align*}
\sum_{m=1}^\infty \frac{1}{m^2-a^2}
&=\sum_{n=1}^\infty \frac{3}{\binom{2n}{n}}\frac{(1+2a)_{n-1}(1-2a)_{n-1}}{(1+a)_n(1-a)_n}\\
&=\sum_{n=1}^\infty \frac{3}{\binom{2n}{n}(n^2-a^2)}\prod_{k=1}^{n-1}\frac{k^2-4a^2}{k^2-a^2}
\end{align*}
ããã¯åé ã®å
¬åŒã§ãã
${\rm accelerated~series~for~}\zeta(3)$
ãŸãïŒ$m,n\ge 0$ãšããŸãã
\begin{align*}
H(m,n)=\L(\frac{n!}{(m+n+1)!}\R)^4
\end{align*}
ãšãïŒ
\begin{align*}
&F(m,n)=(A_m+nB_m+n^2C_m+n^3D_m)H(m,n)\\
&G(m,n)=(P_m+(n+1)Q_m+(n+1)^2R_m)H(m,n)
\end{align*}
ãšå®çŸ©ããŸãã
\begin{align*}
F(m,n)-F(m,n+1)
&=(A_m+nB_m+n^2C_m+n^3D_m)H(m,n)-(A_m+(n+1)B_m+(n+1)^2C_m+(n+1)^3D_m)H(m,n+1)\\
&=((m+n+2)^4(A_m+nB_m+n^2C_m+n^3D_m)-(n+1)^4(A_m+(n+1)B_m+(n+1)^2C_m+(n+1)^3D_m))\frac{H(m,n)}{(m+n+2)^4}
\end{align*}
\begin{align*}
G(m,n)-G(m+1,n)
&=(P_m+(n+1)Q_m+(n+1)^2R_m)H(m,n)-(P_{m+1}+(n+1)Q_{m+1}+(n+1)^2R_{m+1})H(m+1,n)\\
&=((m+n+2)^4(P_m+(n+1)Q_m+(n+1)^2R_m)-(P_{m+1}+(n+1)Q_{m+1}+(n+1)^2R_{m+1}))\frac{H(m,n)}{(m+n+2)^4}
\end{align*}
ãªã®ã§
\begin{align*}
&(m+n+2)^4(A_m+nB_m+n^2C_m+n^3D_m)-(n+1)^4(A_m+(n+1)B_m+(n+1)^2C_m+(n+1)^3D_m)\\
=&(m+n+2)^4(P_m+(n+1)Q_m+(n+1)^2R_m)-(P_{m+1}+(n+1)Q_{m+1}+(n+1)^2R_{m+1})
\end{align*}
ãåžžã«æãç«ã€ããã«$(n+1)^r$ã®ä¿æ°ãæ¯èŒãããš
\begin{align*}
\begin{cases}
&[~1~]\qquad (4M-3)D=R\\
&[~2~]\qquad (4M-2)C+(6M^2-12M+3)D=Q+4MR\\
&[~3~]\qquad (4M-1)B+(6M^2-8M+1)C+(4M^3-18M^2+12M-1)D=P+4MQ+6M^2R\\
&[~4~]\qquad 4MA+(6M^2-4M)B+(4M^3-12M^2-4M)C+(M^4-12M^3+18M^2-4M)D=4MP+6M^2Q+4M^3R\\
&[~5~]\qquad 6M^2A+(4M^3-6M^2)B+(M^4-8M^3+6M^2)C-(3M^4-12M^3+6M^2)D=6M^2P+4M^3Q+M^4R-R'\\
&[~6~]\qquad 4M^3A+(M^4-4M^3)B-(2M^4-4M^3)C+(3M^4-4M^3)D=4M^3P+M^4Q-Q'\\
&[~7~]\qquad M^4(A-B+C-D)=M^4P-P'
\end{cases}
\end{align*}
ãã ãïŒç°¡æœã®çº$X_m:=X,~X_{m+1}:=X',~M:=m+1$ãšããŠããŸãã$F,G$ã§ã®$n$ã®æ¬¡æ°ã¯ïŒå€æ°ã®åæ°ãšé£ç«ãã挞ååŒã®åæ°ãäžèŽããããã«èª¿æŽããŠããŸãã
ããããå°ãäžå¯§ã«è§£ããŠãããŸãããŸãïŒ$[~1~]$ãš$[~2~]$ãã$R$ãæ¶å»ãããš
\begin{align*}
[~2'~]\qquad Q=(4M-2)C-(10M^2-3)D
\end{align*}
ãåŸãŸãã$[~1~],~[~2'~]$ã$[~3~]$ã«ä»£å
¥ãããš
\begin{align*}
[~3'~]\qquad P=(4M-1)B-(10M^2-1)C+(20M^3-1)D
\end{align*}
ãåŸãŸãã$[~4~]$ã®äž¡èŸºã$M$ã§å²ã£ããã®ã«$[~1~],~[~2'~],~[~3'~]$ã代å
¥ãããš
\begin{align*}
[~4'~]\qquad 4A=10MB-20M^2C+35M^3D
\end{align*}
ãåŸãŸãã$[~1~],~[~2'~],~[~3'~],~[~4'~]$ã$[~5~]$ã«ä»£å
¥ãããš
\begin{align*}
[~5'~]\qquad 2(4M+1)D'=10M^3B-30M^4C+63M^5D
\end{align*}
ãåŸãŸãã$[~1~],~[~2'~],~[~3'~],~[~4'~]$ã$[~6~]$ã«ä»£å
¥ãããš
\begin{align*}
[~6'~]\qquad 2(4M+2)C'-2(10M^2+20M+7)D'=10M^4B-32M^5C+70M^6D
\end{align*}
ãåŸãŸãã$MÃ[~5'~]-[~6'~]$ãã
\begin{align*}
[~8~]\qquad 2C'-7(M+1)D'=-\frac{M^5}{2(2M+1)}(2C-7MD)
\end{align*}
ãããšïŒ$[~2'~]$ãã$Q_0=2C_0-7D_0$ãšãªãããšãã
\begin{align*}
[~8'~]\qquad 2C-7MD=\frac{(-1)^mm!^6}{(2m+1)!}Q_0
\end{align*}
ãåŸãŸãã$[~8'~]$ãš$[~5'~]$ãã$C$ãæ¶å»ãããš
\begin{align*}
[~9~]\qquad B=\frac{21}{5}M^2D+\frac{4M+1}{5M^3}D'+\frac{3}{2}\frac{(-1)^mm!^6M}{(2m+1)!}Q_0
\end{align*}
ãåŸãŸãã$[~4'~],~[~8'~],~[~9~]$ãã$A$ã$D$ã§è¡šããš
\begin{align*}
[10]\qquad A=\frac{7}{4}M^3D+\frac{4M+1}{2M^2}D'+\frac{5}{4}\frac{(-1)^mm!^6M^2}{(2m+1)!}Q_0
\end{align*}
ãåŸãŸããããã§ïŒ$A,B,C,P,Q$ã$D$ã§è¡šãããšãã§ããŸããã
ããªãã¡
\begin{align*}
&A=\frac{7}{4}M^3D+\frac{4M+1}{2M^2}D'+\frac{5}{4}M^2V\\
&B=\frac{21}{5}M^2D+\frac{4M+1}{5M^3}D'+\frac{3}{2}MV\\
&C=\frac{7}{2}MD+\frac{1}{2}V\\
&P=-\frac{1}{10}(182M^3-158M^2-35M+10)D+\frac{16M^2-1}{5M^3}D'+\frac{1}{2}(2M-1)(M-1)V\\
&Q=(4M-3)(M-1)D+(2M-1)V\\
&R=(4M-3)D
\end{align*}
ãšãªããŸãããã ãç°¡æœã®çº$V=\dfrac{(-1)^mm!^6}{(2m+1)!}Q_0$ãšããŠããŸãã
$D$ã®åææ¡ä»¶ãã¿ãŸããäžåŒãã
\begin{align*}
&D_0=R_0\\
&D_1=\frac{1}{3}P_0-\frac{1}{30}D_0
\end{align*}
ãããããŸãããŸãïŒ$D_0$ãš$D_1$ã決ãŸãã°$A$ïœ$R$ããã¹ãŠæ±ºãŸãããšãããããŸãããããã®$A$ïœ$R$ã$D$ã§è¡šãããã®ã$[~7~]$ã«ä»£å
¥ããããšã§äžé
é挞ååŒãçŸããŸãããã®æŒžååŒã®äžè¬é
ã®æ瀺åŒãæ±ããã®ã¯éåžžã«å°é£ã§ãããšäºæ³ããŸãã
ãšãªãã°$D$ãåžžã«$0$ãšãªãã°ããããã§ãããã®ããã«$R_0=P_0=0$ãšããŸãããŸãïŒ$Q_0=1$ãšããŸãã
ããã«ããïŒ$D$ã¯åžžã«$0$ãšãªã
\begin{align*}
&A=\frac{5}{4}M^2V\\
&B=\frac{3}{2}MV\\
&C=\frac{1}{2}V\\
&D=0\\
&P=\frac{1}{2}(2M-1)(M-1)V\\
&Q=(2M-1)V\\
&R=0
\end{align*}
ãšãªããŸãããããã$F,G$ã«ä»£å
¥ãããš
\begin{align*}
&F(m,n)=\frac{5(m+1)^2+6(m+1)n+2n^2}{4}\frac{(-1)^mm!^6}{(2m+1)!}\L(\frac{n!}{(m+n+1)!}\R)^4\\
&G(m,n)=\frac{m+2n+2}{2}\frac{(-1)^mm!^6}{(2m)!}\L(\frac{n!}{(m+n+1)!}\R)^4
\end{align*}
ãšãªããŸãããã¢ãæ±ãŸãã°ïŒããšã¯ä»£å
¥ããã ãã§ãã
ããªãã¡
\begin{align*}
\sum_{m=0}^\infty F(m,0)=\sum_{n=0}^\infty \big(F(n,n)+G(n+1,n)\big)
\end{align*}
ãã
\begin{align*}
\zeta(3)=\frac{1}{2}\sum_{n=1}^\infty \frac{(-1)^{n-1}(205n^2-160n+32)}{n^5\binom{2n}{n}^5}
\end{align*}
ãåŸãŸãã