0

Make N (1)

18
0
$$$$

TeXの使い方については Wikipedia を参照

定義

We consider representing of natural numbers by arithmetical expressions using ones, addition, multiplication and parentheses. Let's call this representing numbers in basis $\{ 1,+,\times \}$.
自然数$N$$\{ x,+,\times,(,) \}$を用いて表す。
このときの文字$x$の最小の個数を$N$の「複雑度」とよび、$\omega(N)$あるいは$\|N \|$を用いて表す。

引用 
(1)数学セミナー(日本評論社)2019年7月号Note
(2)J. Arias de Reyna, J. van de Lune, "The question "How many 1's are needed?" revisited"

命題

$x=1$のとき $\|3^n\|=3n$

引用
J. Iraids, K. Balodis, J. Cernenoks, M. Opmanis, R. Opmanis and K. Podnieks,"Integer Complexity: Experimental and Analytical Results"

投稿日:20211231

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。

投稿者

tfshhiy
tfshhiy
7
1258

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中