$$\newcommand{BA}[0]{\begin{align*}}
\newcommand{BE}[0]{\begin{equation}}
\newcommand{bl}[0]{\boldsymbol}
\newcommand{D}[0]{\displaystyle}
\newcommand{EA}[0]{\end{align*}}
\newcommand{EE}[0]{\end{equation}}
\newcommand{h}[0]{\boldsymbol{h}}
\newcommand{k}[0]{\boldsymbol{k}}
\newcommand{L}[0]{\left}
\newcommand{l}[0]{\boldsymbol{l}}
\newcommand{m}[0]{\boldsymbol{m}}
\newcommand{n}[0]{\boldsymbol{n}}
\newcommand{R}[0]{\right}
$$
$\D \bf Theorem.$$\D\zeta(2)=\frac{\pi^2}{6}$
$\D \bf Lemma.$$\D\zeta(2)=\frac{4}{3}\sum_{n=0}^\infty \frac{1}{(2n+1)^2}=2\sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^2}$
$Proof~1.$$\BA\D
\zeta(2)&=\frac{4}{3}\sum_{n=0}^\infty \frac{1}{(2n+1)^2}\\
&=\frac{4}{3}\int_0^1 \frac{\ln\frac{1}{x}}{1-x^2}\,dx\\
&=\frac{4}{3}\int_0^1\int_0^\infty \frac{t}{(1+t^2)(1+t^2x^2)}\,dt\,dx\\
&=\frac{4}{3}\int_0^1 \int_0^\infty \frac{1}{(1+t^2)(1+x^2)}\,dt\,dx\\
&=\frac{4}{3}\frac{\pi}{4}\frac{\pi}{2}\\
&=\frac{\pi^2}{6}
\EA$
$Proof~2.$$\BA\D
\zeta(2)&=\frac{4}{3}\sum_{n=0}^\infty \frac{1}{(2n+1)^2}\\
&=\frac{4}{3}\sum_{n=0}^\infty \frac{\binom{2n}{n}}{2^{2n}(2n+1)}\int_0^1 \frac{x^{2n+1}}{\sqrt{1-x^2}}\,dx\\
&=\frac{4}{3}\int_0^1 \frac{\sin^{-1}x}{\sqrt{1-x^2}}\,dx\\
&=\frac{2}{3}(\sin^{-1}1)^2\\
&=\frac{\pi^2}{6}
\EA$
$Proof~3.$$\quad\psi'(z)$の相反公式$\BA\D
\psi'(z)+\psi'(1-z)=\frac{\pi^2}{\sin^2\pi z}
\EA$
より
$\BA\D
\pi^2&=2\psi'\L(\frac{1}{2}\R)\\
&=2\sum_{n=0}^\infty \frac{1}{\L(n+\frac{1}{2}\R)^2}\\
&=6\zeta(2)
\EA$
$Proof~4.$$\BA\D
\sum_{k=1}^n \frac{1}{\tan^2\frac{(2k-1)\pi}{4n}}=2n^2-n
\EA$
と
$\BA\D
\frac{1}{x^2}-\frac{2}{3}<\frac{1}{\tan^2 x}<\frac{1}{x^2}
\EA$
より$\BA\D
\sum_{k=1}^n\L(\L(\frac{4n}{(2k-1)\pi}\R)^2-\frac{2}{3}\R)<2n^2-n<\sum_{k=1}^n\L(\frac{4n}{(2k-1)\pi}\R)^2
\EA$
すなわち$\BA\D
\frac{\pi^2}{8}\L(1-\frac{1}{2n}\R)<\sum_{k=1}^n\frac{1}{(2k-1)^2}<\frac{\pi^2}{8}\L(1-\frac{1}{6n} \R)
\EA$
となり,$n\to\infty$とすれば$\BA\D
\sum_{k=1}^\infty \frac{1}{(2k-1)^2}=\frac{\pi^2}{8}
\EA$
$Proof~5.$$\quad\rm Fourier~series$$\BA\D
\sum_{n=1}^\infty \frac{\sin nx}{n}=\frac{\pi-x}{2}
\EA$
の両辺を$(0,\pi)$で定積分すると
左辺は
$\BA\D
\sum_{n=1}^\infty \frac{1}{n}\int_0^\pi \sin nx\,dx=\sum_{n=1}^\infty \frac{1-(-1)^n}{n^2}=\sum_{n=1}^\infty \frac{2}{(2n-1)^2}=\frac{3}{2}\zeta(2)
\EA$
右辺は$\BA\D
\int_0^\pi \frac{\pi-x}{2}\,dx=\frac{\pi^2}{4}
\EA$
となるので$\BA\D
\zeta(2)=\frac{\pi^2}{6}
\EA$
$Proof~6.$$\BA\D
\sum_{n=0}^\infty a_n^2=\L(\sum_{n=0}^\infty (-1)^na_n\R)^2+2\sum_{k=1}^\infty (-1)^{k-1}\sum_{n=0}^\infty a_na_{k+n}
\EA$
において,$\D a_n=\frac{1}{2n+1}$とすると
右辺は
$\BA\D
&\L(\sum_{n=0}^\infty \frac{(-1)^n}{2n+1}\R)^2+2\sum_{k=1}^\infty (-1)^{k-1}\sum_{n=0}^\infty \frac{1}{(2n+1)(2k+2n+1)}\\
=&\L(\frac{\pi}{4}\R)^2+2\sum_{k=1}^\infty \frac{(-1)^{k-1}}{2k}\sum_{m=0}^{k-1}\frac{1}{2m+1}\\
=&\frac{\pi^2}{16}+\sum_{k=1}^\infty \frac{(-1)^{k-1}}{k}\int_0^1 \frac{1-x^{2n}}{1-x^2}\,dx\\
=&\frac{\pi^2}{16}+\int_0^1 \frac{1}{1-x^2}\ln\frac{2}{1+x^2}\,dx\\
=&\frac{\pi^2}{16}+\int_0^1 \frac{\ln\frac{1}{x}}{1-x^2}\,dx-\int_0^1 \frac{1}{1-x^2}\ln\frac{1+x^2}{2x}\,dx\\
=&\frac{\pi^2}{16}+\frac{\pi^2}{8}-\int_0^1 \frac{1}{1-\L(\frac{1-t}{1+t}\R)^2}\ln\frac{1+\L(\frac{1-t}{1+t}\R)^2}{2\frac{1-t}{1+t}}\frac{2dt}{(1+t)^2}\\
=&\frac{3\pi^2}{16}-\int_0^1 \frac{\tanh^{-1}t^2}{t}\,dt\\
=&\frac{3\pi^2}{16}-\sum_{n=0}^\infty \frac{1}{2n+1} \int_0^1 t^{4n+1}dt\\
=&\frac{3\pi^2}{16}-\frac{1}{2}\sum_{n=0}^\infty \frac{1}{(2n+1)^2}
\EA$
となり,左辺は$\BA\D
\sum_{n=0}^\infty \frac{1}{(2n+1)^2}
\EA$
となるので$\BA\D
\sum_{n=0}^\infty \frac{1}{(2n+1)^2}=\frac{\pi^2}{8}
\EA$
$Proof~7.$$\BA\D
\int_0^\frac{\pi}{2} x^2\cos^{2n-1}x\,dx=\frac{2^{2n}}{2n\binom{2n}{n}}\L(\frac{\pi^2}{8}-\sum_{k=0}^{n-1} \frac{1}{(2k+1)^2}\R)
\EA$
が成り立ちます。これより明らかに
$\BA\D
\frac{\pi^2}{8}-\sum_{k=0}^{n-1} \frac{1}{(2k+1)^2}>0
\EA$
また,$\BA\D
\sum_{k=0}^{n-1} \frac{1}{(2k+1)^2}
&=\int_0^1 \frac{1-x^{2n}}{1-x^2}\ln\frac{1}{x}\,dx\\
&=\frac{1}{4}\int_0^1 \frac{1-x^n}{(1-x)\sqrt{x}}\ln\frac{1}{x}\,dx\\
&=\frac{1}{4}\int_0^1 \frac{1-x^n}{(1-x)\sqrt{x}}\L((1-x)+\frac{(1-x)^2}{2}+\cdots \R)dx\\
&>\frac{1}{4}\int_0^1 \frac{1-x^n}{(1-x)\sqrt{x}}\sum_{m=1}^M\frac{(1-x)^m}{m}\,dx\\
&=\sum_{m=1}^M\frac{1}{2m}\sum_{k=0}^{n-1}\frac{1}{2k+2m+1}
\EA$
となります。ここで,前提として$n≫1$において$\BA\D
2n\frac{\binom{2n}{n}}{2^{2n}}\int_0^\frac{\pi}{2}x^2\cos^{2n-1}x\,dx⪅\frac{1}{2n}
\EA$
が成り立つことを考慮しつつ,これを証明します。すなわち,$\BA\D
\frac{\pi^2}{8}-\sum_{m=1}^M\frac{1}{2m}\sum_{k=0}^{n-1}\frac{1}{2k+2m+1}<\frac{1}{2n}
\EA$
が$n≫1$におい常に成り立つような$M$が存在することを示せばよいです。実際に数値を確認すると,$M=2$の時点で,$n\ge 33$で不等式は成り立ちます。よって,$n≫1$において$\BA\D
\frac{\pi^2}{8}-\sum_{k=0}^{n-1}\frac{1}{(2k+1)^2}<\frac{1}{2n}
\EA$
が成り立つことがわかりました。すなわち$\BA\D
0<\frac{\pi^2}{8}-\sum_{k=0}^{n-1}\frac{1}{(2k+1)^2}<\frac{1}{2n}
\EA$
となり$\BA\D
\sum_{k=0}^\infty \frac{1}{(2k+1)^2}=\frac{\pi^2}{8}
\EA$
となります。 $Proof~8.$$\quad \sin $の無限乗積展開$\BA\D
\frac{\sin \pi x}{\pi x}=\prod_{n=1}^\infty \L(1-\frac{x^2}{n^2}\R)
\EA$
と,$\rm Maclaurin~Series$
$\BA\D
\frac{\sin \pi x}{\pi x}=\sum_{n=0}^\infty \frac{(-1)^{n}\pi^{2n}x^{2n}}{(2n+1)!}
\EA$
の$x^2$の係数を比較することで$\BA\D
\sum_{n=1}^\infty \frac{1}{n^2}=\frac{\pi^2}{6}
\EA$