関数
$ f(x)=\frac{x}{x^2+3} $
に対して,$y=f(x) のグラフをC$とする。
点$A(1,f(1))におけるC$の接線を
$l:y=g(x)$
とする。
(1) $Cとlの共有点でAと異なるものがただ1つ存在することを示し,その点のx$座標を求めよ。
(2) (1)で求めた共有点の$x座標を\alpha$とする。定積分
$\int_\alpha^1\lbrace{f(x)-g(x)}^2\rbrace dx$
を計算せよ。
解説(私見)
(1) かなり基本的な問題。微分して接線の傾きを求め,直線の方程式より接線の式を求め,それと元の関数の式との連立方程式を解く。
$f’(x)=\frac{1}{x^2+3}-\frac{2x^2}{(x^2+3)^2}=\frac{x^2+3-2x^2}{(x^2+3)^2}=\frac{3-x^2}{(x^2+3)^2}$
より
$f’(1)=\frac{1}{8}$
これより,接線$l$の方程式は,
$y-f\left(1\right)=\frac{1}{8}\left(x-1\right)$
$y=\frac{1}{8}\left(x+1\right)$
となるから,方程式 $\frac{x}{x^2+3}=\frac{1}{8}\left(x+1\right)$ より,
$\frac{8x}{x^2+3}=x+1$
$8x=\left(x+1\right)\left(x^2+3\right)\qquad\left(x^2+3>0\right)$
$x^3+x^2-5x+3=0$
$\left(x-1\right)\left(x^2+2x-3\right)=0$
$\left(x-1\right)^2\left(x+3\right)=0$
$x=-3,1$
となるから,$Aと異なる共有点がただ1つ存在し,その点のx$座標は-3である。
(2)定積分の計算問題
$\int_{-3}^{1}\left\{f\left(x\right)-g\left(x\right)\right\}^2dx$
$=\int_{-3}^{1}\left\{\frac{x}{x^2+3}-\frac{1}{8}\left(x+1\right)\right\}^2dx$
$=\int_{-3}^{1}\left\{{\left(\frac{x}{x^2+3}\right)^2-\frac{1}{4}\left(x+1\right)\left(\frac{x}{x^2+3}\right)+\frac{1}{64}\left(x+1\right)}^2\right\}dx$
$=\int_{-3}^{1}\left\{{\frac{x^2}{\left(x^2+3\right)^2}-\frac{1}{4}\cdot\frac{x^2+x}{x^2+3}+\frac{1}{64}\left(x+1\right)}^2\right\}dx$
$=\int_{-3}^{1}\left\{\frac{x^2}{\left(x^2+3\right)^2}-\frac{x^2+3+x-3}{4\left(x^2+3\right)}+\frac{1}{64}\left(x^2+2x+1\right)\right\}dx$
$=\int_{-3}^{1}\left\{\frac{x^2}{\left(x^2+3\right)^2}-\frac{1}{4}-\frac{x-3}{4\left(x^2+3\right)}+\frac{1}{64}\left(x^2+2x+1\right)\right\}dx$
$=\int_{-3}^{1}\left\{\frac{x^2}{\left(x^2+3\right)^2}-\frac{x-3}{4\left(x^2+3\right)}+\frac{1}{64}\left(x^2+2x-15\right)\right\}dx$
$I_1=\int_{-3}^{1}{\frac{x^2}{\left(x^2+3\right)^2}dx},I_2=\int_{-3}^{1}\left\{-\frac{x-3}{4\left(x^2+3\right)}\right\}dx,I_3=\int_{-3}^{1}{\frac{1}{64}\left(x^2+2x-15\right)}dx$
とおき,各定積分を計算し,その和を求めれば終わり。$I_1,I_2について,
x=\sqrt3tan\theta$ とおくと,
$\frac{dx}{d\theta}=\frac{\sqrt3}{\cos^2\theta}$
$dx=\frac{\sqrt3}{\cos^2\theta}\ d\theta$
であり,$xと\theta$の対応表は下のようになる。
$x$ | -3 | … | 1 |
---|---|---|---|
$\theta$ | $-\frac{\pi}{3}$ | … | $\frac{\pi}{6}$ |
したがって,(註1に途中式補足)
$I_1=\int_{-3}^{1}{\frac{x^2}{\left(x^2+3\right)^2}dx}$
$=\int_{-\frac{\pi}{3}}^{\frac{\pi}{6}}{\frac{\left(\sqrt3tan\theta\right)^2}{\left\{\left(\sqrt3tan\theta\right)^2+3\right\}^2}\frac{\sqrt3}{\cos^2\theta}\ d\theta}$
$=\frac{1}{\sqrt3}\int_{-\frac{\pi}{3}}^{\frac{\pi}{6}}{\sin^2\theta\ d\theta}$
$=\frac{1}{\sqrt3}\left[\frac{\theta}{2}-\frac{sin2\theta}{4}\right]_{-\frac{\pi}{3}}^{\frac{\pi}{6}}$
$=\frac{1}{\sqrt3}\left(\frac{\pi}{4}-\frac{\sqrt3}{4}\right)$
$I_2=\int_{-3}^{1}\left\{-\frac{x-3}{4\left(x^2+3\right)}\right\}dx$
$=\int_{-\frac{\pi}{3}}^{\frac{\pi}{6}}\left\{-\frac{\sqrt3tan\theta-3}{4\left({3\tan}^2\theta+3\right)}\right\}\frac{\sqrt3}{\cos^2\theta}d\theta$ (註2に途中式補足)
$=\frac{1}{4}\int_{-\frac{\pi}{3}}^{\frac{\pi}{6}}\left(-tan\theta+\sqrt3\right)d\theta$
$=\frac{1}{4}\left[\log{cos\theta}+\sqrt3\theta\right]_{-\frac{\pi}{3}}^{\frac{\pi}{6}}$
$=\frac{1}{8}\left(\log{3}+\sqrt3\pi\right)$
$I_3=\int_{-3}^{1}{\frac{1}{64}\left(x^2+2x-15\right)}dx$
$=\frac{1}{64}\left[\frac{x^3}{3}+x^2-15x\right]_{-3}^1$ (註3に途中式補足)
$=-\frac{11}{12}$
これらより,
$I_1+I_2+I_3=\frac{1}{\sqrt3}\left(\frac{\pi}{4}-\frac{\sqrt3}{4}\right)+\frac{1}{8}\left(\log{3}+\sqrt3\pi\right)-\frac{11}{12}$
$\hspace{ 54pt }=\frac{\sqrt3\pi}{12}+\frac{\sqrt3\pi}{8}-\frac{1}{4}+\frac{1}{8}\log{3}-\frac{11}{12}$
$\hspace{ 54pt }=-\frac{7}{6}+\frac{5\sqrt3\pi}{24}+\frac{1}{8}\log{3}$
註1
$\int_{-3}^{1}{\frac{x^2}{\left(x^2+3\right)^2}dx}
=\int_{-\frac{\pi}{3}}^{\frac{\pi}{6}}{\frac{\left(\sqrt3tan\theta\right)^2}{\left\{\left(\sqrt3tan\theta\right)^2+3\right\}^2}\frac{\sqrt3}{\cos^2\theta}\ d\theta}$
$\hspace{ 55pt }=\int_{-\frac{\pi}{3}}^{\frac{\pi}{6}}{\frac{{3\tan}^2\theta}{\left({3\tan}^2\theta+3\right)^2}\frac{\sqrt3}{\cos^2\theta}\ d\theta}$
$\hspace{ 55pt }=\int_{-\frac{\pi}{3}}^{\frac{\pi}{6}}{\frac{\tan^2\theta}{{\sqrt3\left(\tan^2\theta+1\right)}^2}\frac{1}{\cos^2\theta}\ d\theta}$
$\hspace{ 55pt }=\int_{-\frac{\pi}{3}}^{\frac{\pi}{6}}{\frac{\tan^2\theta}{{\sqrt3\left(\frac{1}{\cos^2\theta}\right)}^2}\frac{1}{\cos^2\theta}\ d\theta}$
$\hspace{ 55pt }=\frac{1}{\sqrt3}\int_{-\frac{\pi}{3}}^{\frac{\pi}{6}}{\frac{\tan^2\theta}{\frac{1}{\cos^2\theta}}\ d\theta}$
$\hspace{ 55pt }=\frac{1}{\sqrt3}\int_{-\frac{\pi}{3}}^{\frac{\pi}{6}}{\sin^2\theta\ d\theta}$
$\hspace{ 55pt }=\frac{1}{\sqrt3}\int_{-\frac{\pi}{3}}^{\frac{\pi}{6}}{\frac{1-cos2\theta}{2}\ d\theta}$
$\hspace{ 55pt }=\frac{1}{\sqrt3}\left[\frac{\theta}{2}-\frac{sin2\theta}{4}\right]_{-\frac{\pi}{3}}^{\frac{\pi}{6}}$
$\hspace{ 55pt }=\frac{1}{\sqrt3}\left(\frac{\pi}{12}+\frac{\pi}{6}-\frac{\sqrt3}{8}-\frac{\sqrt3}{8}\right)$
$\hspace{ 55pt }=\frac{1}{\sqrt3}\left(\frac{\pi}{4}-\frac{\sqrt3}{4}\right)$
註2
$\int_{-3}^{1}\left\{-\frac{x-3}{4\left(x^2+3\right)}\right\}dx
=\int_{-\frac{\pi}{3}}^{\frac{\pi}{6}}\left\{-\frac{\sqrt3tan\theta-3}{4\left({3\tan}^2\theta+3\right)}\right\}\frac{\sqrt3}{\cos^2\theta}d\theta$
$\hspace{78pt}=\int_{-\frac{\pi}{3}}^{\frac{\pi}{6}}\left\{-\frac{tan\theta-\sqrt3}{4\left(\tan^2\theta+1\right)}\right\}\frac{1}{\cos^2\theta}d\theta$
$\hspace{78pt}=\frac{1}{4}\int_{-\frac{\pi}{3}}^{\frac{\pi}{6}}\left(-tan\theta+\sqrt3\right)d\theta$
$\hspace{78pt}=\frac{1}{4}\left[\log{cos\theta}+\sqrt3\theta\right]_{-\frac{\pi}{3}}^{\frac{\pi}{6}}$
$\hspace{78pt}=\frac{1}{4}\left(\log{\frac{\sqrt3}{2}}-log\frac{1}{2}+\sqrt3\cdot\frac{\pi}{2}\right)$
$\hspace{78pt}=\frac{1}{4}\left(\log{\sqrt3}+\frac{\sqrt3\pi}{2}\right)$
$\hspace{78pt}=\frac{1}{8}\left(\log{3}+\sqrt3\pi\right)$
註3
$\int_{-3}^{1}{\frac{1}{64}\left(x^2+2x-15\right)}dx=\frac{1}{64}\left[\frac{x^3}{3}+x^2-15x\right]_{-3}^1$
$\hspace{101pt}=\frac{1}{64}\left(\frac{28}{3}-8-60\right)$
$\hspace{101pt}=\frac{1}{16}\left(\frac{7}{3}-17\right)$
$\hspace{101pt}=-\frac{1}{16}\cdot\frac{44}{3}$
$\hspace{101pt}=-\frac{11}{12}$