0

模擬テスト4-2

16
0
$$$$

[1]
(1)次の関数においてxの値の変化が[]内である時の平均変化率を求めよ。[366]
(i) $y=3x-1[aからbまで]$ 
 
 
(ii) $y=3x^2-6x+4[-4から2まで]$   

 
(2)次の関数を微分せよ。[375]
(i)$y=(3x-2)^3$ 
 
 
(ii)$y=(2x+1)(4x^2-2x+1)$ 
 
  
(3)次の関数$f(x)$について、$f'(2),f'(-3)$を求めよ。[376]
(i)$\displaystyle f(x) =- \frac{2}{3}x^2-\frac{1}{3}x$ 
 
 
(ii)$\displaystyle f(x)=\frac{1}{4}x^2+\frac{1}{2}x-1$ 
 
   
 
  
 
 
(4)次の関数$f(x)$について、[]内の文字で微分せよ。[377]
(i)$\displaystyle V=\frac{\sqrt{2}}{12}a^3\ \ [a]$ 
 
 
(ii)$V=\pi r^2h\ \ [r]$ 
 
  
  
  
(5)曲線y=$x^2+3x-1$について、次の接線の方程式をそれぞれ求めよ。[385]
(i)点$(1,3)$を通る 
 
 
(ii)傾きが1 
 
 
(6)次の不定積分を求めよ。[414,415]
(i)$\int dx$ 
 
 
(ii)$\int(6x^3-3x^2+1)dx$ 
 
 
(iii)$\int(2t+3)(2t-3)dt$ 
 
 
(iv)$\int (t-1)^3dt$ 
 
 
(7)次の定積分を求めよ。[418,420]
(i)$\displaystyle \int ^{0}_{-3}(-y^2+4y+2)dy$ 
 
 
(ii)$\displaystyle \int ^{2}_{1}dx$ 
 
 
(iii)$\displaystyle 2\int ^2 _1 (x^2-x)dx+\int ^2 _1 (2x-x^2)dx$ 
 
  
 
(iv)$\displaystyle 2\int ^1 _{-3} (2x+1)^2dx-\int ^1 _{-3} (2x-1)^2dx$ 
 
  
 
(8)次の曲線と直線で囲まれた図形の面積$S$を求めよ。[428,429,430]
(i)$y=x^2-4x+5,\ x軸,\ y軸,\ x=3$ 
 
  
  
  
(ii)$y=-x^2-2x,\ x軸,\ x=1,\ x=2$ 
 
  
  
(iii)$y=-x(4-x),\ x軸$ 
 
  
 
 
[2]次の関数のグラフを増減表と共に書き、極値があればそれを求めよ(別紙へ)。[393]
(i)$\ f(x)=(x+1)(x-2)^2$
(ii)$\displaystyle f(x)= \frac{1}{3}x^3 - x^2-3x+\frac{13}{3}$
(iii)$\displaystyle f(x)= -x^3-3x^2-3x-1$
(iv)$\displaystyle f(x)= x^3+6x^2+12x+4$

[3]$()$を定義域とする次の関数のグラフの最大最小値を求めよ。[400]
(i)$\ f(x)=4x^3-18x^2+3\ \ (0< x<5)$
 
  
  
 
 
(ii)$\ f(x)=x^3-3x^2-9x+17\ \ (-3< x \leq 4)$
 
  
  
 
  
(iii)$\ f(x)=4x^3-6x^2-24x+5\ \ (-2 < x < 3)$
 
  
  
 
  
[4]関数$f(x)=-3x^3+kx^2-2x+1$において$f'(x)=0$となる異なる実数$x$の値が存在しないような定数$k$の範囲を求めよ[379]
 
 
  
 
  
 
 
[5]$x^3+3x^2-9x+a=0$が異なる$3$つの実数解を持つ時、$a$が満たすべき範囲を求めよ。[405]
 
 
  
 
  
 
  
[6]$a$を定数とするとき、$3$次方程式$x^3-6x^2+9x-a=0$の異なる実数解の個数を$a$による形で求めよ。[407]
 
  
 
 
 
 
  
  
 
 
 
[7]3次関数$y=x^3-2x+4$のグラフと直線$y=x+k$の共有点の個数を$k$による形で求めよ。[408]              

投稿日:2022227
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。

投稿者

仕事は高校数学を教える事とプログラミングです。物理も少々。

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中