Tn(x):Chebyshev polynomials of the first kindζ(s):Riemann zeta function
∑0<ncosnxn=−ln|2sinx2|(x∈R)
∑0<ncosnxn=∑0<n1nRe(einx)=Re(−ln(1−eix))=−Re(ln(eix2−e−ix22i⋅2eix2i))=−Re(ln(2sinx2⋅eix2i))=−ln(|2sinx2|⋅|eix2i|)=−ln|2sinx2|
∑0<nTn(t)n=−12ln(1−t)−ln22(−1≤t≤1)
lettascosxin theorem1, and use equalityTn(cosx)=cos(nx)andsin2x2=1−cosx2
∫0π/2tanxθdθ=π2secπx2(0≤x<1)
∫0π/2tanxθdθ=∫0π/2sinxθcos−xθdθ=∫0π/2sin2⋅1+x2−1θcos2⋅1−x2−1θdθ=12B(1+x2,1−x2)=Γ(1+x2)Γ(1−x2)2Γ(1)=π2sinπ(1+x)2=π2csc(π2+πx2)=π2secπx2
∑0≤n<m<l(−1)m+l(n+1/2)ml
バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。