11

交代二項変換

771
0

タイトルにもあるように、最近考えていた交代二項変換(英:Binomial transform)について、面白い性質がいくつもあったので書きます。

交代二項変換

交代二項変換

関数Aに対して交代二項変換を施してできる関数Tを、
T(n)=k=0n(nk)(1)kA(k)
で定める。

以降、fに交代二項変換を施したものをT(f)と表す。
また、f[k]f(k)を表すこととします。
明らかな場合は単にfなどと書くこととします。
いくつかの例を見ていきます。

f(k)=1の時、
T(f)[0]=f(0)=1
T(f)[n]=k=0n(nk)(1)k=0 (n1)

f(k)=ak(aは定数)の時、二項定理より
T(f)[n]=k=0n(nk)(1)kak=(1a)n

f(k)=1k+1の時、
T(f)[n]=k=0n(nk)(1)k1k+1=1n+1k=0n(n+1k+1)(1)k
=1n+1k=1n+1(n+1k)(1)k+1
=1n+1(0(1))
=1n+1
よって、T(1k+1)[n]=1n+1

T(f(k+1))[n]T(f(k))[n+1]です。(個人的な話ですが)僕はこれを勘違いしまくりました…

交代二項変換の性質

ここからはこの交代二項変換の性質についてみていきます。
この記事では以下、基本的にkについて変換している、とみてください。

T(f+g)=T(f)+T(g)

証明
k=0n(nk)(1)k(f(k)+g(k))
=k=0n(nk)(1)kf(k)+k=0n(nk)(1)kg(k)
=T(f)+T(g)

T(af)=aT(f)(aは定数)

証明
T(af)
=k=0n(nk)(1)k(a×f(k))
=ak=0n(nk)(1)k×f(k)
=aT(f)

T(f(k))[n]T(f(k+1))[n]=T(f(k))[n+1]

括弧ばかりで見にくくなってしまいました
これはT(f(k))からT(f(k+1))を求める式とみられます。

証明
T(f(k))[n+1]
=k=0n+1(n+1k)(1)kf(k)
=k=0n+1((nk)+(nk1))(1)kf(k)
=k=0n(nk)(1)kf(k)+k=1n+1(nk1)(1)kf(k)
=k=0n(nk)(1)kf(k)+k=0n(nk)(1)k+1f(k+1)
=T(f(k))[n]T(f(k+1))[n]

s=0n1T(f(k+1))[s]=f(0)T(f(k))[n]

これはT(f(k+1))からT(f(k))を求める式とみられます。

証明
定理3
T(f(k))[n]T(f(k))[n+1]=T(f(k+1))[n]
とみることで、
T(f(k))[0]T(f(k))[1]=T(f(k+1))[0]
T(f(k))[1]T(f(k))[2]=T(f(k+1))[1]

T(f(k))[n1]T(f(k))[n]=T(f(k+1))[n1]
を足し合わせることで
s=0n1T(f(k+1))[s]=T(f(k))[0]T(f(k))[n]=f(0)T(f(k))[n]

T(f(k))[n+1]=f(0)(n+1)T(f(k+1)k+1)[n]

先ほど行った、 T(1k+1)[n]=1n+1の証明とほとんど同じです。

証明
T(f(k))[n+1]
=k=0n+1(n+1k)(1)kf(k)
=f(0)+k=1n+1(n+1k)(1)kf(k)
=f(0)+k=0n(n+1k+1)(1)k+1f(k+1)
=f(0)+k=0n(nk)×n+1k+1×(1)k+1f(k+1)
=f(0)(n+1)k=0n(nk)f(k+1)k+1(1)k
=f(0)(n+1)T(f(k+1)k+1)[n]

T(T(f))=f

この性質、綺麗で好きです!

証明
T(T(f))[n]
=k=0n(nk)(1)kT(f(k))
=k=0n(nk)(1)ks=0k(ks)(1)sf(s)
=s=0nk=sn(nk)(ks)(1)k+sf(s)
=s=0nk=sn(ns)(nsks)(1)k+sf(s)
=s=0n(ns)f(s)k=0ns(nsk)(1)k
ここで、k=0ns(nsk)(1)k={0(ns1)1(ns=0)なので、
s=0n(ns)f(s)k=0ns(nsk)(1)k
=s=n(ns)f(s)
=f(n)

求めてみる1

定理4,定理5を変形して、
s=0nT(f(k+1))[s]=f(0)T(f(k))[n+1]
(n+1)T(f(k+1)k+1)[n]=f(0)T(f(k))[n+1]
となるので、

s=0nT(f(k+1))[s]=(n+1)T(f(k+1)k+1)[n]つまり
1n+1s=0nT(f(k))[s]=T(f(k)k+1)[n]
です。

これを使ってT(1(k+1)m)[n]を順番に求めていきます。(mは整数)
T(1k+1)[n]=1n+1
T(1(k+1)2)[n]=1n+1s=0nT(1k+1)[s]=1n+1a1=0n1a1+1
T(1(k+1)3)[n]=1n+1s=0nT(1(k+1)2)[s]=1n+1a2=0n1a2+1a1=0a21a1+1

これを繰り返すことで、
T(1(k+1)m)[n]
=1n+1am1=0n1am1+1a1=0a21a1+1
=1n+1nam1a101(am1+1)(a1+1)

を得ます。
ちなみに、定理4と定理5を使うことで多重ゼータっぽいものについても交代二項変換を求めることが出来ます。

交代二項変換と母関数

実は、f(n)の母関数をF(x),T(f(n))の母関数をG(x)とするとこの二つには関係があります。(ここでfの母関数とはk=0f(k)xkのことを指すものとします。)
ここで、次の関係が成り立ちます。

G(x)=11xF(x1x)

G(x)を変形すれば証明できます。

証明
G(x)
=n=0xnT(f(k))[n]
=n=0xnk=0n(nk)(1)kf(k)
=k=0n=kxn(nk)(1)kf(k)
=k=0(1)kf(k)n=kxn(nk)
=k=0(1)kf(k)xk(1x)k+1
=11xF(x1x)

収束半径はたぶん|x|<1です。
これを先ほど求めたものに適用してみると、
n=0xn(n+1)m=n=0(x)n(1x)n+11n+1nam1a101(am1+1)(a1+1)
=amam1a10(x)am(1x)am+11(am+1)(am1+1)(a1+1)
となり、x=1でも収束しそうなのでx=1として これ が得られます。ちなみにこれは iida_256さんのこちらの記事 のように反復積分でも求められるようです。

求めてみる2

T(1(k+1)m)[n]が求まったので、aを実数としてT(1(k+a)m)[n]を求めることを考えます。以下、実数xに対して、x!Γ(x+1)の意味で使うこととします。

まず、T(1k+a)[n]を求めます。
T(1k+a)[n]=k=0n(nk)(1)k1k+aは実は、n!a(a+1)(n+a)の部分分数分解の形になっています。
よって、T(1k+a)[n]=n!(a1)!(n+a)!です。

T(fg)[n]=s=0nT(f(k+s))[ns]T(g)[s](ns)

を示します。

証明
T(f(k)g(k))[n]
=k=0n(nk)(1)kf(k)g(k)
=k=0n(nk)(1)kf(k)T(T(g))[k]
=k=0n(nk)(1)kf(k)s=0k(ks)(1)sT(g)[s]
=s=0nk=sn(nk)(ks)(1)k+sf(k)T(g)[s]
=s=0nk=sn(ns)(nsks)(1)k+sf(k)T(g)[s]
=s=0n(ns)T(g)[s]k=0ns(nsk)(1)kf(k+s)
=s=0n(ns)T(g)[s]T(f(k+s))[ns]
よって示される。

定理8で、f(k)=g(k)=1k+aとして、
T(1(k+a)2)[n]
=s=0nT(1k+s+a)[ns]T(1k+a)[s](ns)
=s=0n(ns)!(s+a1)!(n+a)!s!(a1)!(s+a)!n!(ns)!s!
=(a1)!n!(n+a)!s=0n1(s+a)

また、定理8で、f(k)=1k+a,g(k)=1(k+a)2として、
T(1(k+a)3)[n]
=s=0nT(1k+s+a)[ns]T(1(k+a)2)[s](ns)
=s=0n(ns)!(s+a1)!(n+a)!(a1)!s!(s+a)!a1=0s1(a1+a)n!(ns)!s!
=(a1)!n!(n+a)!s=0n1(s+a)a1=0s1(a1+a)
を得る。

このようにしていくことで、帰納的に
T(1(k+a)m)[n]=(a1)!n!(n+a)!nam1a101(a1+a)(am1+a)
が示せます。これはa=1とした先ほどの式の二通り目の証明と言えるかもです。

これを先ほどの母関数の式に当てはめることで、 この 関係式も導出できます。

定理8によって、T(f(k+a))を求めることが出来ればT(f(k+a)m)を求めることが出来ることが分かります。

おわりに

 交代二項変換の面白い性質やそこから得られる関係式などを求めました。元の定義式を考えると、T(f(k+a))からT(f(k+a)m)が求まるのは非自明な感じがして面白かったです。
 ここまで読んでいただきありがとうございました!

投稿日:202248
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。
バッチを贈って投稿者を応援しよう

バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。

投稿者

kozy
kozy
131
6581
級数をいじったりしてます

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中
  1. 交代二項変換
  2. 交代二項変換の性質
  3. 求めてみる1
  4. 交代二項変換と母関数
  5. 求めてみる2
  6. おわりに