(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab2±b3(a+b)n=∑k=0n(nk)akbn−ka2−b2=(a−b)(a+b)a3−b3=(a−b)(a2+ab+b2)an−bn=(a−b)(an−1+an−2b+⋯+abn−2+bn−1)a4+4b4=(a2+2ab+2b2)(a2−2ab+2b2)(a2+nb2)(c2+nd2)=(ac±nbd)2+n(ad∓bc)2a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)ax2+bx+c=0⟺x=−b±b2−4ac2aD2=b2−4acα2+β2=−abα2β2=cay3+ay+b=0⟺y=13(−272b+33i2−4a3−27b23−3a−272b+33i2−4a3−27b2−3)(y→x−b3)D3=−4ac3+b2c2−4b2d+18abcd−27a2d2α3+β3+γ3=−baα3β3+β3γ3+γ3α3=caα3β3γ3=−daa+b2≥aba2+b2+c2≥ab+bc+ca∑i=1nai≥n∏i=1nainab+c+bc+a+ca+b≥32ax+by≤(a2+b2)(x+y)logx≤x−1(1+x)n≥1+nx(a12+a22)(b12+b22)≥(a1b1+a2b2)2(a12+a22+a32)(b12+b22+b32)≥(a1b1+a2b2+a3b3)2(∑i=1nai2)(∑i=1nbi2)≥(∑i=1naibi)2π2x≤sinx≤x(0≥x≥π2)sin2θ+cos2θ=11+tan2θ=1cos2θsin(a±b)=sinacosb±cosasinbcos(a±b)=cosacosb∓sinasinbtan(a±b)=tana±tanb1∓tanatanbsin2θ=2sinθcosθcos2θ=2cos2θ−1tan2θ=2tanθ1−tan2θsin3θ=−4sin3θ+3sinθcos3θ=4cos3θ−3cosθtan3θ=3tanθ−tan3θ1−3tan2θsin2θ=1−cos2θ2cos2θ=1+cos2θ2tan2θ=1−cos2θ1+cos2θeiθ=cosθ+isinθcosh2θ−sinh2θ=11−tanh2θ=1cosh2θsinh(a±b)=sinhacoshb±coshasinhbcosh(a±b)=coshacoshb±sinhasinhbtanh(a±b)=tanha±tanhb1±tanhatanhbsinh2x=2sinhxcoshxcosh2x=2coshx2−1tanh2x=2tanhx1+tanh2xsinh3x=4sinhx3+3sinhxcosh3x=4cosh3x−3coshxtanh3x=3tanhx+tanh3x1+3tanh2xsinhx=−isin(ix)coshx=cos(ix)asinA=bsinB=csinC=2Ra=bcosC+ccosBa2=b2+c2−2bccosAcosA=b2+c2−a22bca−ba+b=tan(12(A−B))tan(12(A+B))cot(A2)=s−a(s−a)(s−b)(s−c)ssinA2sinB2sinC2=14(cosA+cosB+cosC−1)=(s−a)(s−b)(s−c)abcsin2A+sin2B+sin2C=2(cosAcosBcosC+1)cosA2cosB2cosC2=14(sinA+sinB+sinC)=s4RtanAtanBtanC=tanA+tanB+tanC1tanA/2tanB/2tanC/2=1tanA/2+1tanB/2+1tanC/2r=4RsinA2sinB2sinC2S=12bcsinA=rs=abc4R=2R2sinAsinBsinC=a2sinBsinC2sinA=s(s−a)(s−b)(s−c)=rA(s−a)=rrArBrClimx→af(x)g(x)=limx→af′(x)g′(x)f′(a)=limh→0f(a+h)−f(a)h(fg)′=f′g+fg′(fg)″=f″g+2f′g′+fg″(fg)(n)=∑k=0n(nk)f(k)g(n−k)(1f)′=−f′f2(gf)′=g′f−f′gf2(f∘g)′=f′∘gg′(xa)′=axa−1(sinx)′=cosx(cosx)′=−sinx(tanx)′=1cos2x(cotx)′=−1sin2x(ax)′=axloga(logax)′=1xloga(arcsinx)′=11−x2(arccosx)′=−11−x2(arctanx)′=11+x2(sinhx)′=coshx(coshx)′=sinhx(tanhx)′=1−tanh2x(logx)(n)=−(n−1)!(−x)−n∫(x−a)t dx=1t+1(x−a)t+1+C∫αβ(x−α)(β−x) dx=(β−α)36∫abf(x) dx=b−a6(f(a)+4f(a+b2)+f(b))∫01xm(1−x)n dx=m!n!(m+n+1)!∫1sinx dx=12log(1−cosx1+cosx)+C∫1cosx dx=12log(1+sinx1−sinx)+C∫1tanx dx=log|sinx|+C∫eaxsinbx dx=eaxa2+b2(asinbx−bcosbx)+C∫eaxcosbx dx=eaxa2+b2(acosbx+bsinbx)+C∫1x2+a2 dx=log(x+x2+a2)+C∫x2+a2 dx=12(xx2+a2+a2log(x+x2+a2))+C∫1x2−a2 dx=12alog|x−ax+a|+C∫−∞∞e−ax2 dx=πa∫0∞x3ex−1 dx=π415∫0∞x2n+1e−ax2 dx=n!2an+1∫−∞∞x2ne−ax2 dx=(2n−1)!!2nanπa∫−∞∞e−ax2+bx+c dx=πaeb24a+c∫−∞∞sin2x dx=∫−∞∞cos2x dx=π2S=∫ab1+f′(x)2 dx=∫αβ12(xy′−yx′) dt=∫αβ12r(θ)2dθL=∫αβf′(t)2+g′(t)2 dt=∫αβr2+(drdθ)2 dθV=∫abπ(f(x))2 dx=23π∫αβr(θ)3sinθ dθ=∫ab2πx|f(x)| dx=πcosθ∫ab(mx−f(x))2 dxΓ(x)=∫0∞tx−1e−t dtζ(s)=∑n=1∞1nssinh(x)=ex−e−x2cosh(x)=ex+e−x2tanh(x)=ex−e−xex+e−xgd(x)=∫0x1cosht dtςa(x)=11+e−ax=tanh(ax2)+12F(x,k)=∫0x1(1−t2)(1−k2t2) dtE(x,k)=∫0x1−k2t21−t2 dtΠ(a;x,k)=∫0x1(1−at2)(1−t2)(1−k2t2) dtJn(x)=1πin∫0πeixcosθcosnθ dθ∑k=1nk=12n(n+1)∑k=1nk2=16n(n+1)(2n+1)∑k=1nk3=(12n(n+1))2∑k=1nka=1a+1∑k=0a(a+1k)Bkna−k+1∏k=1naak=a∑k=1nak∏k=1n(k+a)=(a+n)!a!Fn=15((1+52)n−(1−52)n)Vn=πn2Γ(n2+1)ex=∑k=0∞xkk!sinx=∑k=0∞(−1)kx2k+1(2k+1)!cosx=∑k=0∞(−1)kx2k(2k)!tanx=∑k=1∞B2k(−4)k(1−4k)(2k)!x2k−1log(x+1)=∑k=0∞(−1)kxk+1k+11(1−ax)m=∑k=0∞(m+k−1m−1)akxkW0(x)=∑k=0∞(−k)k−1k!xksinhx=∑k=0∞1(2k+1)!x2k+1coshx=∑k=0∞1(2k)!x2ktanhx=∑k=1∞B2k4k(4k−1)(2k)!x2k−1∑k=1∞k=−112∑k=1∞Fk=−1∑k=0n(pk)(qn−k)=(p+qn)Rin=(n4)+−5n3+45n2−70n+2424δ2(n)−3n2δ4(n)+−45n2+262n6δ6(n)+42nδ12(n)+60nδ18(n)+35nδ24(n)−38nδ30(n)−82nδ42(n)−330nδ60(n)−144nδ84(n)−96nδ90(n)−144nδ120(n)−96nδ210(n)∑n=1∞1ns=∏p:prime11−1ps∑n=1∞λ(n)ns=ζ(2s)ζ(s)∑n=1∞μ(n)ns=1ζ(s)π=4∑n=0∞(−1)n2n+1=23∑n=0∞(−1)n3n(2n+1)=∏n=1∞(2n2n−1⋅2n2n+1)1π=22992∑n=0∞(26390n+1103)⋅(4n)!(4n99n⋅n!)4=12640320640320∑n=0∞(545140134n+13591409)⋅(6n)!(−640320)3n⋅(3n)!⋅(n!)34π=∑n=0∞(−1)n(21460n+1123)⋅(4n)!8822n+1(4nn!)41π=12(1249638720+15999984061)1249638720+15999984061∑n=0∞(−1)n(6n)!(1657145277365+21217571091261+(107578229802750+377398089267261)n)(3n)!(n!)3(1249638720+15999984061)n
バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。