$$\newcommand{BA}[0]{\begin{align*}}
\newcommand{BE}[0]{\begin{equation}}
\newcommand{bl}[0]{\boldsymbol}
\newcommand{D}[0]{\displaystyle}
\newcommand{EA}[0]{\end{align*}}
\newcommand{EE}[0]{\end{equation}}
\newcommand{h}[0]{\boldsymbol{h}}
\newcommand{k}[0]{\boldsymbol{k}}
\newcommand{L}[0]{\left}
\newcommand{l}[0]{\boldsymbol{l}}
\newcommand{m}[0]{\boldsymbol{m}}
\newcommand{n}[0]{\boldsymbol{n}}
\newcommand{R}[0]{\right}
\newcommand{vep}[0]{\varepsilon}
$$
級数さいこおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおおお😭定理$\BA\D\\
\pi\sum_{n=0}^\infty \L(\frac{\binom{2n}{n}}{2^{2n}}\R)^3\prod_{n\le k}\frac{1}{1-\frac{a^2}{(2k+1)^2}}
=\frac{\pi}{\cos\frac{\pi a}{2}}\sum_{n=0}^\infty \L(\frac{\binom{2n}{n}}{2^{2n}}\R)^3\prod_{k=0}^{n-1}\L(1-\frac{a^2}{(2k+1)^2}\R)
=4\sum_{n=0}^\infty \L(\frac{\binom{2n}{n}}{2^{2n}}\R)^2\frac{4n+1}{(4n+1)^2-a^2}
=\frac{\Gamma(\frac{1-a}{4})\Gamma(\frac{1+a}{4})}{\Gamma(\frac{3-a}{4})\Gamma(\frac{3+a}{4})}\\\
\EA$
先ず,次の等式が成り立つ.
$\BA\D\\
\int_0^\infty \frac{\cosh ax}{\cosh^{2n+1}x}\,dx=\frac{\pi}{2}\frac{\binom{2n}{n}}{2^{2n}}\prod_{n\le k}\frac{1}{1-\frac{a^2}{(2k+1)^2}}
\EA$
これにより
$\BA\D\\
&\frac{\pi^2}{4}\sum_{n=0}^\infty \L(\frac{\binom{2n}{n}}{2^{2n}}\R)^3\prod_{n\le k}\frac{1}{1-\frac{a^2}{(2k+1)^2}}\\
=&\int_0^\infty \frac{\cosh ax}{\cosh x}\,\frac{\pi}{2}\sum_{n=0}^\infty \L(\frac{\binom{2n}{n}}{2^{2n}}\R)^2\frac{1}{\cosh^{2n}x}\,dx\\
=&\int_0^\infty \frac{\cosh ax}{\cosh x}K\L(\frac{1}{\cosh x}\R)\,dx\\
=&\int_0^\infty \frac{\cosh ax}{\cosh x}(1+e^{-2x})K(e^{-2x})\,dx\\
=&\int_0^1 (t^{-a}+t^a)K(t^2)\,dt\\
=&\frac{\pi}{2}\sum_{n=0}^\infty \L(\frac{\binom{2n}{n}}{2^{2n}}\R)^2\int_0^1 (t^{-a}+t^a)\,t^{4n}\,dt\\
=&\pi\sum_{n=0}^\infty \L(\frac{\binom{2n}{n}}{2^{2n}}\R)^2\frac{4n+1}{(4n+1)^2-a^2}\\
=&\frac{\pi}{4}\frac{\Gamma(\frac{1-a}{4})\Gamma(\frac{1+a}{4})}{\Gamma(\frac{3-a}{4})\Gamma(\frac{3+a}{4})}
\EA$
定理$\BA\D
\sum_{0\le n\le m}\L(\frac{\binom{2n}{n}}{2^{2n}}\R)^3\frac{2^{2m}}{(2m+1)^2\binom{2m}{m}}\prod_{k=n}^m \frac{1}{1-\frac{a^2}{(2k+1)^2}}
=\sum_{n=0}^\infty \L(\frac{\binom{2n}{n}}{2^{2n}}\R)^2\frac{2}{(4n+1)^2-a^2}\\\
\EA$
次の等式が成り立つ.
$\BA\D\\
\int_0^\infty \frac{\sinh ax}{\cosh^{2n+1}x}\,dx=a\frac{\binom{2n}{n}}{2^{2n}}\sum_{n\le m}\frac{2^{2m}}{(2m+1)^2\binom{2m}{m}}\prod_{k=n}^m \frac{1}{1-\frac{a^2}{(2k+1)^2}}
\EA$
ので,同様に
$\BA\D\\
&\frac{\pi a}{2}\sum_{0\le n\le m}\L(\frac{\binom{2n}{n}}{2^{2n}}\R)^3\frac{2^{2m}}{(2m+1)^2\binom{2m}{m}}\prod_{k=n}^m \frac{1}{1-\frac{a^2}{(2k+1)^2}}\\
=&\cdots\\
=&\int_0^1 (t^{-a}-t^a)K(t^2)\,dt\\
=&\pi a\sum_{n=0}^\infty \L(\frac{\binom{2n}{n}}{2^{2n}}\R)^2\frac{1}{(4n+1)^2-a^2}
\EA$