こんにち[加法の結果]、n=1です。今回は、$\sin1\degree,\ \cos1\degree, \tan 1\degree$の厳密値について求めていきます。
まず準有名角として、$15\degree, 18\degree$の場合の三角関数の値を以下にまとめておきます。
$$\sin 15\degree =\frac{\sqrt{6}-\sqrt{2}}{4}, \quad \cos 15\degree = \frac{\sqrt{6}+\sqrt{2}}{4}, \quad \tan 15\degree = 2-\sqrt{3}$$
$$\sin 18\degree = \frac{-1+\sqrt{5}}{4}, \quad \cos 18\degree = \frac{\sqrt{10+2\sqrt{5}}}{4}, \quad\tan 18\degree = \frac{\sqrt{25-10\sqrt{5}}}{5}$$
3倍角の定理は以下の通りです。
$$\sin 3\theta = -4\sin^3\theta+3\sin\theta, \quad \cos3\theta = 4\cos^3\theta-3\cos\theta, \quad \tan3\theta = \frac{3\tan\theta-\tan^3\theta}{1-3\tan^2\theta}$$
$$4\sin^3\frac{\theta}{3}-3\sin\frac{\theta}{3}+\sin\theta=0$$
$$4\cos^3\frac{\theta}{3}-3\cos\frac{\theta}{3}-\cos\theta=0$$
$$\tan^3\frac{\theta}{3}-3\tan\theta\tan^2\frac{\theta}{3}-3\tan\frac{\theta}{3}+\tan\theta=0$$
では加法定理を使って$3\degree$の場合のそれぞれを求めましょう。
$$ \begin{equation} \begin{aligned} \sin 3\degree&=\sin(18\degree-15\degree) =\sin18\degree \cos15\degree -\cos18\degree\sin15\degree\\ &=\frac{-1+\sqrt{5}}{4} \cdot \frac{\sqrt{6}+\sqrt{2}}{4} - \frac{\sqrt{10+2\sqrt{5}}}{4} \cdot \frac{\sqrt{6}-\sqrt{2}}{4} \\ &=\frac{(-1+\sqrt{5}-\sqrt{10+2\sqrt{5}})\sqrt{6}+(-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2}}{16} \qquad (=\frac{-\sqrt{2}-\sqrt{6}+\sqrt{10}+\sqrt{30}+2\sqrt{2(10-5\sqrt{3}+2\sqrt{5}-\sqrt{15})}}{16}) \end{aligned} \end{equation} $$
$$ \begin{equation} \begin{aligned} \cos 3\degree&=\cos(18\degree-15\degree) =\cos18\degree \cos15\degree +\sin18\degree\sin15\degree\\ &=\frac{\sqrt{10+2\sqrt{5}}}{4} \cdot \frac{\sqrt{6}+\sqrt{2}}{4} + \frac{-1+\sqrt{5}}{4} \cdot \frac{\sqrt{6}-\sqrt{2}}{4} \\ &=\frac{(-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{6}+(1-\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2}}{16} \qquad (=\frac{\sqrt{2}-\sqrt{6}-\sqrt{10}+\sqrt{30}+2\sqrt{2(10+5\sqrt{3}+2\sqrt{5}+\sqrt{15})}}{16}) \end{aligned} \end{equation} $$
$$ \begin{equation} \begin{aligned} \tan 3\degree&=\cos(18\degree-15\degree) =\frac{\tan18\degree-\tan15\degree}{1+\tan18\degree\tan15\degree}\\ &=\frac{\frac{\sqrt{25-10\sqrt{5}}}{5}-(2-\sqrt{3})}{1+\frac{(2-\sqrt{3})\sqrt{25-10\sqrt{5}}}{5}} \\ &=\frac{-10+5\sqrt{3}+\sqrt{25-10\sqrt{5}}}{5+(2-\sqrt{3})\sqrt{25-10\sqrt{5}}} \qquad (= \frac{(-1+\sqrt{5}-\sqrt{10+2\sqrt{5}})\sqrt{6}+(-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2}}{(-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{6}+(1-\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2}}) \end{aligned} \end{equation} $$
$\frac{1}{3}$倍角の公式①より、3次方程式を解き以下が示せます。
$\omega^3=1$を満たす複素数とする。このとき、
$$
\sin\frac{\theta}{3}=\frac{\omega\sqrt[3]{-\sin\theta+i\cos\theta}+\omega^2\sqrt[3]{-\sin\theta-i\cos\theta}}{2}
$$
$$
\cos\frac{\theta}{3}=\frac{\omega\sqrt[3]{\cos\theta+i\sin\theta}+\omega^2\sqrt[3]{\cos\theta-i\sin\theta}}{2}
$$
$$
\tan\frac{\theta}{3}=\tan\theta+\frac{\omega \sqrt[3]{i+\tan\theta}+\omega^2\sqrt[3]{-i+\tan\theta}}{\cos^{\frac{2}{3}}\theta}
$$
(ここでの3乗根は主値)
$\omega$は半角の公式の正負のように$\theta$の値から基本的には分かるのですが、今回は$\sin$は$\omega=\frac{-1-i\sqrt{3}}{2}$、$\cos$は$\omega=1$、$\tan$は$\omega=\frac{-1-i\sqrt{3}}{2}$でした。
これにより
$$
\begin{equation}
\begin{aligned}
\sin 1\degree&=\sin\frac{3\degree}{3}=\frac{\omega\sqrt[3]{-\sin3\degree+i\cos3\degree}+\omega^2\sqrt[3]{-\sin3\degree-i\cos3\degree}}{2}\\
&=\frac{1}{2}((\frac{-1-i\sqrt{3}}{2})\sqrt[3]{-(\frac{(-1+\sqrt{5}-\sqrt{10+2\sqrt{5}})\sqrt{6}+(-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2}}{16})+i(\frac{(-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{6}+(1-\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2}}{16})}+(\frac{-1+i\sqrt{3}}{2})\sqrt[3]{-(\frac{(-1+\sqrt{5}-\sqrt{10+2\sqrt{5}})\sqrt{6}+(-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2}}{16})-i(\frac{(-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{6}+(1-\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2}}{16})}) \\
&=\frac{1}{8}(-(1+i\sqrt{3})\sqrt[3]{\frac{((1-\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{6}+(1-\sqrt{5}-\sqrt{10+2\sqrt{5}})\sqrt{2})+i((-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{6}+(1-\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2})}{2}}+(-1+i\sqrt{3})\sqrt[3]{\frac{((1-\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{6}+(1-\sqrt{5}-\sqrt{10+2\sqrt{5}})\sqrt{2})+i((1-\sqrt{5}-\sqrt{10+2\sqrt{5}})\sqrt{6}+(-1+\sqrt{5}-\sqrt{10+2\sqrt{5}})\sqrt{2})}{2}})
\end{aligned}
\end{equation}
$$
$$ \begin{equation} \begin{aligned} \cos 1\degree&=\cos\frac{3\degree}{3}=\frac{\omega\sqrt[3]{\cos3\degree+i\sin3\degree}+\omega^2\sqrt[3]{\cos3\degree-i\sin3\degree}}{2}\\ &=\frac{1}{2}(\sqrt[3]{(\frac{(-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{6}+(1-\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2}}{16})+i(\frac{(-1+\sqrt{5}-\sqrt{10+2\sqrt{5}})\sqrt{6}+(-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2}}{16})}+\sqrt[3]{(\frac{(-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{6}+(1-\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2}}{16})-i(\frac{(-1+\sqrt{5}-\sqrt{10+2\sqrt{5}})\sqrt{6}+(-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2}}{16})}) \\ &=\frac{1}{4}(\sqrt[3]{\frac{((-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{6}+(1-\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2})+i((-1+\sqrt{5}-\sqrt{10+2\sqrt{5}})\sqrt{6}+(-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2})}{2}}+\sqrt[3]{\frac{((-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{6}+(1-\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2})+i((1-\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{6}+(1-\sqrt{5}-\sqrt{10+2\sqrt{5}})\sqrt{2})}{2}}) \end{aligned} \end{equation} $$
$$ \begin{equation} \begin{aligned} \tan 1\degree&=\tan\frac{3\degree}{3}=\tan3\degree+\frac{\omega \sqrt[3]{i+\tan3\degree}+\omega^2\sqrt[3]{-i+\tan3\degree}}{\cos^{\frac{2}{3}}3\degree}\\ &=\frac{-10+5\sqrt{3}+\sqrt{25-10\sqrt{5}}}{5+(2-\sqrt{3})\sqrt{25-10\sqrt{5}}}+(\frac{(-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{6}+(1-\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2}}{16})^{-\frac{2}{3}}((\frac{-1-i\sqrt{3}}{2})\sqrt[3]{i+\frac{-10+5\sqrt{3}+\sqrt{25-10\sqrt{5}}}{5+(2-\sqrt{3})\sqrt{25-10\sqrt{5}}}}+(\frac{-1+i\sqrt{3}}{2})\sqrt[3]{-i+\frac{-10+5\sqrt{3}+\sqrt{25-10\sqrt{5}}}{5+(2-\sqrt{3})\sqrt{25-10\sqrt{5}}}}) \\ &=\frac{-10+5\sqrt{3}+\sqrt{25-10\sqrt{5}}}{5+(2-\sqrt{3})\sqrt{25-10\sqrt{5}}}+\frac{1}{\sqrt[3]{4+\sqrt{7+\sqrt{5}+\sqrt{6(5+\sqrt{5})}}}}(-(1+i\sqrt{3})\sqrt[3]{i+\frac{-10+5\sqrt{3}+\sqrt{25-10\sqrt{5}}}{5+(2-\sqrt{3})\sqrt{25-10\sqrt{5}}}}+(-1+i\sqrt{3})\sqrt[3]{-i+\frac{-10+5\sqrt{3}+\sqrt{25-10\sqrt{5}}}{5+(2-\sqrt{3})\sqrt{25-10\sqrt{5}}}})\\ &( \because (\frac{(-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{6}+(1-\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2}}{16})^{-\frac{2}{3}}=\frac{2}{\sqrt[3]{4+\sqrt{7+\sqrt{5}+\sqrt{6(5+\sqrt{5})}}}}) \end{aligned} \end{equation} $$
以上のことから$\sin1\degree,\ \cos1\degree,\ \tan1\degree$は以下の通りです。
$$ \sin1\degree=\frac{1}{8}(-(1+i\sqrt{3})\sqrt[3]{\frac{((1-\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{6}+(1-\sqrt{5}-\sqrt{10+2\sqrt{5}})\sqrt{2})+i((-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{6}+(1-\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2})}{2}}+(-1+i\sqrt{3})\sqrt[3]{\frac{((1-\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{6}+(1-\sqrt{5}-\sqrt{10+2\sqrt{5}})\sqrt{2})+i((1-\sqrt{5}-\sqrt{10+2\sqrt{5}})\sqrt{6}+(-1+\sqrt{5}-\sqrt{10+2\sqrt{5}})\sqrt{2})}{2}}) $$
$$ \cos1\degree=\frac{1}{4}(\sqrt[3]{\frac{((-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{6}+(1-\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2})+i((-1+\sqrt{5}-\sqrt{10+2\sqrt{5}})\sqrt{6}+(-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2})}{2}}+\sqrt[3]{\frac{((-1+\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{6}+(1-\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{2})+i((1-\sqrt{5}+\sqrt{10+2\sqrt{5}})\sqrt{6}+(1-\sqrt{5}-\sqrt{10+2\sqrt{5}})\sqrt{2})}{2}}) $$
$$ \tan1\degree=\frac{-10+5\sqrt{3}+\sqrt{25-10\sqrt{5}}}{5+(2-\sqrt{3})\sqrt{25-10\sqrt{5}}}+\frac{1}{\sqrt[3]{4+\sqrt{7+\sqrt{5}+\sqrt{6(5+\sqrt{5})}}}}(-(1+i\sqrt{3})\sqrt[3]{i+\frac{-10+5\sqrt{3}+\sqrt{25-10\sqrt{5}}}{5+(2-\sqrt{3})\sqrt{25-10\sqrt{5}}}}+(-1+i\sqrt{3})\sqrt[3]{-i+\frac{-10+5\sqrt{3}+\sqrt{25-10\sqrt{5}}}{5+(2-\sqrt{3})\sqrt{25-10\sqrt{5}}}}) $$
以上で今回のsin1°、cos1°、tan1°の厳密値については終わりです。間違っている部分がありましたらご指摘のほどお願いします。久しぶりの投稿となりましたが、投稿を見てくださりありがとうございました。