[定理05]
$D \gt1,0 \lt j \lt D $とおく.
$$ \sum_{n=1}^{∞}(\frac{1}{Dn-j}-\frac{1}{Dn})=\int_{0}^{1} \frac{x^{D-j-1}-x^{D-1}}{1- x^D}dx $$
[証明]
$$ \sum_{n=1}^{N}(\frac{1}{Dn-j}-\frac{1}{Dn})=\sum_{n=1}^{N} \int_{0}^{1} (x^{Dn-j-1}-x^{Dn-1})dx$$
$$ \sum_{n=1}^{N}(\frac{1}{Dn-j}-\frac{1}{Dn})=\int_{0}^{1}(x^{D-j-1}-x^{D-1}) \frac{1- (x^D)^{N}}{1- x^D}dx$$
$$ \sum_{n=1}^{N}(\frac{1}{Dn-j}-\frac{1}{Dn})=\int_{0}^{1} \frac{x^{D-j-1}-x^{D-1}}{1- x^D}dx+\int_{0}^{1} \frac{x^{D-j-1}-x^{D-1}}{1- x^D}(x^D)^{N}dx$$
$$\frac{x^{D-j-1}-x^{D-1}}{1- x^D}(x^D)^{N}=\frac{1-x^{j}}{1-x^D}x^{(N+1)D-1}$$
ここで,$f(x)= \frac{1-x^p}{1-x} $ $(0 \leqq x \leqq 1 )$ ,ただし,$0 \lt p\lt1$とする.
「平均値の定理」から,$f(x)=p \theta ^{p-1},0 \lt \theta \lt 1$で,$0 \leqq f(x)\leqq p\lt 1 $.
したがって,
$$\left| \frac{1-x^{j}}{1-x^D} \right| \leqq \frac {j}{D}$$
$$\left| \int_{0}^{1}\frac{1-x^{j}}{1-x^D}x^{(N+1)D-1} dx\right| \leqq \frac {j}{D}\left| \int_{0}^{1}x^{(N+1)D-1} dx\right| \rightarrow 0 (N\rightarrow∞ )$$
ここで,$N\rightarrow∞ $のとき,
$$ \sum_{n=1}^{N}(\frac{1}{Dn-j}-\frac{1}{Dn})\rightarrow \int_{0}^{1} \frac{x^{D-j-1}-x^{D-1}}{1- x^D}dx $$
よって,成り立つ.□□