$$
2 ^{p}-1 \equiv 1\mod{6} を証明する
$$
$$
\boldsymbol{p} = 3の時 2^{3}-1 =7
$$
$$
\boldsymbol{p} = nの時 2^{n} -1 \equiv 1\mod{6}
$$
$$
2^{n+2} -1=2^{n+1}+2^{n}+........+1
$$
$$
2^{n+2} -1=2^{n+1}+2^{n}+(2^{n}-1)
$$
$$
2^{n+2} -1=6 \times 2^{n-1}+(2^{n}-1)
$$
$$
\Rightarrow 2^{n+2} -1 \equiv 1 \mod{6}
$$