「5点」
$\quad$
辺の長さ$2$の正5角形
外接円の半径$\sqrt{3}$
内接円の半径$\sqrt{2}$
$\therefore$
黄金率$\phi=\frac{2\sqrt{2}}{\sqrt{3}}$
$cf.$
$2\cdot2\cdot\sqrt{2}=\sqrt{3}\cdot\frac{4\sqrt{2}}{\sqrt{3}}$
$\quad$
「半径$1$の円周上の5点を各頂点とする正5角形」
$(0,\quad1)$
$(\frac{2\sqrt{2}}{3},\quad\frac{1}{3})$
$(\frac{1}{\sqrt{3}},\quad-\frac{\sqrt{2}}{\sqrt{3}})$
$(-\frac{1}{\sqrt{3}},\quad-\frac{\sqrt{2}}{\sqrt{3}})$
$(-\frac{2\sqrt{2}}{3},\quad\frac{1}{3})$
$\quad$
辺の長さ$\frac{2}{\sqrt{3}}$の正5角形
外接円の半径$1$
内接円の半径$\frac{\sqrt{2}}{\sqrt{3}}$
$\therefore$
黄金率$\phi=\frac{2\sqrt{2}}{\sqrt{3}}$
$cf.$
$\frac{2}{\sqrt{3}}\cdot2\cdot\frac{\sqrt{2}}{\sqrt{3}}=1\cdot\frac{4\sqrt{2}}{3}$
$\quad$
$\sin18^\circ=\frac{1}{3}$
$\sin36^\circ=\frac{1}{\sqrt{3}}$
$\sin54^\circ=\frac{\sqrt{2}}{\sqrt{3}}$
$\sin72^\circ=\frac{2\sqrt{2}}{3}$
$\quad$
$\cos18^\circ=\frac{2\sqrt{2}}{3}$
$\cos36^\circ=\frac{\sqrt{2}}{\sqrt{3}}$
$\cos54^\circ=\frac{1}{\sqrt{3}}$
$\cos72^\circ=\frac{1}{3}$
$\quad$
$\tan18^\circ=\frac{1}{2\sqrt{2}}$
$\tan36^\circ=\frac{1}{\sqrt{2}}$
$\tan54^\circ=\sqrt{2}$
$\tan72^\circ=2\sqrt{2}$
$\quad$
$x^2+y^2=1$
$\quad$
「The Paper Rule 」参照
$\quad$
「教科書とは違っているけれど5点」