[定理06]
$0 \lt r \lt 1,D \gt 1,0 \lt j \lt $Dのとき
$$
\sum_{n=0}^{∞} \frac{r^{j+nD}}{j+nD} = \int_{0}^{r} \frac{x^{j-1}}{1-x^D}dx
$$
[証明]
[定理02]を使う.$N \rightarrow ∞$のとき
$$
\sum_{n=0}^{N-1} \frac{r^{j+nD}}{j+nD} = \frac{r^j}{j} \sum_{n=0}^{N-1} \frac{(r^D)^{n}}{1+n( \frac{D}{j} )} \rightarrow \frac{r^j}{j}\int_{0}^{1} \frac{1}{1-r^{D}x^{\frac{D}{j}}}dx
$$
$y^j=r^{j}x$とおくと
$$\frac{r^j}{j}\int_{0}^{1} \frac{1}{1-r^{D}x^{\frac{D}{j}}}dx= \frac{r^j}{j}\int_{0}^{r} \frac{ \frac{jy^{j-1}}{r^j} }{1-y^D}dy=\int_{0}^{r} \frac{ y^{j-1}}{1-y^D}dy$$
よって,成り立つ.□□
[適用その2]
$$\sum_{n=0}^{∞} \frac{r^{1+3n}}{1+3n} = \int_{0}^{r} \frac{1}{1-x^3}dx $$
$$\sum_{n=0}^{∞} \frac{r^{2+3n}}{2+3n} = \int_{0}^{r} \frac{x}{1-x^3}dx$$
この定積分の値は複号を順にとって.
$$
\frac{\log(1-r^3)}{6} -\frac{\log(1-r)}{2} \pm \frac{1}{ \sqrt{3}}{(\alpha - \frac{\pi}{6} )} $$
$\alpha$は,$r+ \frac{1}{2}= \frac{ \sqrt{3}}{2} \tan \alpha,\frac{\pi}{6} \lt \alpha \lt \frac{\pi}{3} $とした.
[定理01]から,
$$\sum_{n=1}^{∞} \frac{r^{3n}}{3n} =-\frac{\log(1-r^3)}{3} $$