[適用その4][定理05]から,
$$\sum_{n=1}^{∞}( \frac{1}{2n-1}- \frac{1}{2n} )= \log2. \cdots (121)
$$
$$\sum_{n=1}^{∞}( \frac{1}{3n-1}- \frac{1}{3n} )= -\frac{\sqrt{3}\pi}{18} +\frac{\log3}{2}. \cdots (131)
$$
$$\sum_{n=1}^{∞}( \frac{1}{3n-2}- \frac{1}{3n} )= \frac{\sqrt{3}\pi}{18} +\frac{\log3}{2}. \cdots (132)
$$
$$\sum_{n=1}^{∞}( \frac{1}{4n-1}- \frac{1}{4n} )= -\frac{\pi}{8} +\frac{3\log2}{4}. \cdots (141)
$$
$$\sum_{n=1}^{∞}( \frac{1}{4n-3}- \frac{1}{4n} )= \frac{\pi}{8} +\frac{3\log2}{4}. \cdots (143)
$$