ごちゃごちゃうるせえ!
数学を楽しむものなら、数式で語ろうぜ!
という事で、淡々と余計なことを語らずに二項係数の逆数の和について書いていくよ。
\begin{equation} \frac{1}{{}_{n}C_{k}}=kB(k,n-k+1) \end{equation}
$\begin{eqnarray} \frac{1}{{}_{n}C_{k}}&=&\frac{k!\left(n-k\right)!}{n!}\\ &=&\frac{\Gamma{\left(k+1\right)}\Gamma{\left(n-k+1\right)}}{\Gamma{\left(n+1\right)}}\\ &=&k\frac{\Gamma{\left(k\right)}\Gamma{\left(n-k+1\right)}}{\Gamma{\left(n+1\right)}}\\ &=&kB(k,n-k+1) \end{eqnarray}$
\begin{equation} \sum_{k=0}^{\infty}\frac{1}{{}_{ka+b}C_{b}}=b\int_{0}^{1}\frac{\left(1-x\right)^{b-1}}{1-x^{a}}dx \end{equation}
\begin{eqnarray} \sum_{k=0}^{\infty}\frac{1}{{}_{ka+b}C_{b}}&=& b\sum_{k=0}^{\infty}B\left(b,ka+1\right)\\ &=&b\sum_{k=0}^{\infty}B\left(ka+1,b\right)\\ &=&b\sum_{k=0}^{\infty}\int_{0}^{1}x^{ka}\left(1-x\right)^{b-1}dx\\ &=&b\int_{0}^{1}\frac{\left(1-x\right)^{b-1}}{1-x^{a}}dx \end{eqnarray}
$a=1$の場合
\begin{eqnarray}
\sum_{k=0}^{\infty}\frac{1}{{}_{k+b}C_{b}}&=&
b\int_{0}^{1}\left(1-x\right)^{b-2}dx\\
&=&\frac{b}{b-1}
\end{eqnarray}
$a=2,b\geq 3 $の場合
\begin{eqnarray}
\sum_{k=0}^{\infty}\frac{1}{{}_{2k+b}C_{b}}&=&
b\int_{0}^{1}\frac{\left(1-x\right)^{b-2}}{1+x}dx\\
&=&b\int_{1}^{2}\frac{\left(2-x\right)^{b-2}}{x}dx\\
&=&b\int_{0}^{\ln{2}}\left(2-\exp{x}\right)^{b-2}dx\\
&=&b\int_{0}^{\ln{2}}\sum_{k=0}^{b-2}\left(-1\right)^{k}{}_{b-2}C_{k}2^{b-2-k}\exp{kx}dx\\
&=&b2^{b-1}\{\ln{2}+\sum_{k=1}^{b-2}\frac{\left(-1\right)^{k}}{k}{}_{b-2}C_{k}\}
\end{eqnarray}
$a=2,b=2$とした場合
\begin{equation}
\sum_{k=0}^{\infty}\frac{1}{{}_{2k+2}C_{2}}=2\ln{2}
\end{equation}