1

自作問題あなぐら10(n枚のカードの確率)

34
0
$$\newcommand{bm}[1]{\boldsymbol{#1}} \newcommand{Lvec}[1]{\overrightarrow{\mathrm{#1}}} $$

問題

 $n$$2$以上の整数とする.机の上に白いカードが$n$枚並べられている.$n$回さいころを投げ,出た目を1つずつ左のカードから順に記入していく.このようにして$10$進数で表された$n$桁の数$A$をつくる.例えば$n = 3$のとき,出た目が順に$1,\ 4,\ 5$であるなら$A = 145$である.以下の問いに答えよ.

  1. $A$$4$の倍数である確率を求めよ.
  2. カードを並び替えることにより$A$から新たな自然数$A'$をつくる.適切にカードを並び替えて,$A'$$5$の倍数にすることができる確率を求めよ.
  3. $A'$$5$の倍数にすることができるとき,$A$$4$の倍数であった確率を求めよ.

余話

 確率漸化式ではない,かつ$n$絡みの確率の問題を作りたくて作成しました.しかし作成して思ったことですが,確率の問題文って難しいです.数学的厳密さを保ちながら具体的状況設定を描写するのがこんなに骨が折れるとは.上記の問題文をより良くブラッシュアップできる人,募集中です.

解答

 現在作成中(答えの数値のみ提示中)

クリックして答えをチェック


(1) $\dfrac{1}{4}$
(2) $1 - \left(\dfrac{5}{6}\right)^n$
(3) $\dfrac{\frac{1}{4} - \frac{7}{25} (\frac{5}{6})^n}{1 - (\frac{5}{6})^n}$

投稿日:20241129
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。

投稿者

のんびりやります

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中