∫ln3xln(1−x)1−xdx=−H1(x)ln3x+Li2(x)ln3x+3H2(x)ln2x−3Li3(x)ln2x−6H3(x)lnx+6Li4(x)lnx+6H4(x)−6Li5(x)
∫ln3xln(1−x)1−xdx=−∫∑k≥1Hkxkln3kdx=−∑k≥1Hk∫xkln3kdx=−∑k≥1Hk∂3∂k3[∫xkdx]=−∑k≥1Hk∂3∂k3[xk+1k+1]=−∑k≥1Hk[xk+1ln3xk+1−3xk+1ln2x(k+1)2+6xk+1lnx(k+1)3−6xk+1(k+1)4]=−ln3x∑k≥1Hk+1xk+1k+1+ln3x∑k≥1xk+1(k+1)2+3ln2x∑k≥1Hk+1xk+1(k+1)2−3ln2x∑k≥1xk+1(k+1)3−6lnx∑k≥1Hk+1xk+1(k+1)3+6lnx∑k≥1xk+1(k+1)4+6∑k≥1Hk+1xk+1(k+1)4−6lnx∑k≥1xk+1(k+1)4=−H1(x)ln3x+Li2(x)ln3x+3H2(x)ln2x−3Li3(x)ln2x−6H3(x)lnx+6Li4(x)lnx+6H4(x)−6Li5(x)
∫01lnxln(1+x)1−xdx=−32ζ(2)ln2+ζ(3)
∫01lnxln(1+x)1−xdx=[∫0xlny1−ydyln(1+x)]01−∫01J(x)1+xdx(J(x)=∫0xlny1−ydyx∈[0,1])=−ζ(2)ln2−∫01∫01xlnxy(1−xy)(1+x)dydx=−ζ(2)ln2−∫01(∫01xlny(1−xy)(1+x)dx)dy−∫01(∫01xlnx(1−xy)(1+x)dy)dx=−ζ(2)ln2+∫01[ln(1−xy)y(1+y)+ln(1+x)1+y]x=0x=1lnydy+∫01[ln(1−xy)1+x]y=0y=1lnxdx=−ζ(2)ln2+∫01ln(1−y)lnyy(1+y)dy+ln2∫01lny1+ydy+∫01ln(1−x)lnx1+xdx=−ζ(2)ln2+∫01ln(1−y)lnyydy+ln2∫01lny1+ydy=−ζ(2)ln2+12(ln2xln(1−x)+∫01ln2y1−ydy)+ln2(∫01lny1−ydy−∫012ylny1−y2dy)=−ζ(2)ln2+12∫01ln2y1−ydy+ln2(∫01lny1−ydy−12∫01lny1−ydy)=−32ζ(2)ln2+ζ(3)
∫01(ln2(1−x)ln2(1+x)1−x−ln22ln2(1−x)1−x)dx=18ζ(5)−12ln2ζ(4)+2ln22ζ(3)−23ln32ζ(2)−2ζ(2)ζ(3)+110ln52+4Li5(12)
I=∫01(ln2(1−x)ln2(1+x)1−x−ln22ln2(1−x)1−x)dx=∫01ln2(1−x)1−x(ln2(1+x)−ln22)dx=IBP23∫01ln3(1−x)ln(1+x)1+xdxここでa3b=(a+b)48−(a−b)48−ab3→b=ln(1+x)a=ln(1−x)(ln(1−x))3ln(1+x)=(ln(1−x)+ln(1+x))48−(ln(1−x)−ln(1+x))48−(ln(1−x))(ln(1+x))3であるからI=112∫01ln4(1−x2)1+xdx−112∫01ln4(1−x)−ln4(1+x)1+xdx−23∫01ln(1−x)ln3(1+x)1+xdx=(165ln52−16ln32ζ(2)+48ln22ζ(3)−54ln2ζ(4)−24ζ(2)ζ(3)+72ζ(5))−(452ζ(5))−(−6Li5(12)+6ζ(5)−6ln2ζ(4)+3ln22ζ(3)−ln32ζ(2)+14ln52)=18ζ(5)−12ln2ζ(4)+2ln22ζ(3)−23ln32ζ(2)−2ζ(2)ζ(3)+110ln52+4Li5(12)
∫01ln4(1−x2)1+x dx=∫01(1−x)ln4(1−x2)1−x2 dx=x2=y12∫01(1−y)(ln4(1−y))(1−y)y dy=IBP−120∫01ln5(1−y)y3/2 dy=−120limx↦−12y↦1∂5∂y5B(x,y)=165ln52−16ln32ζ(2)+48ln22ζ(3)−54ln2ζ(4)−24ζ(2)ζ(3)+72ζ(5)
∫01ln4(1−x)−ln4(1+x)1+x dx=1−x1+x=y∫01ln4x1+x dx=452ζ(5)
∫01ln(1−x)ln3(1+x)1+x dx=11+x=y−∫121ln(2x−1x)ln3xx dx=∫121ln4xx dx−∫121ln(2x−1)ln3xx dx=15ln52−∫121ln(1−2x)ln3xx dx−iπ4ln42∵ln(2x−1)=ln(1−2x)−iπ=15ln52+∑n≥12nn∫1/21xn−1ln3x dx−iπ4ln42=15ln52+∑n≥12nn(ln32n2n+3ln22n22n+6ln2n32n+6n42n−6n4)−iπ4ln42=15ln52+ln32ζ(2)+3ln22ζ(3)+6ln2ζ(4)+6ζ(5)−6Li5(2)−iπ4ln42ここでLi5(x)=−74ζ(4)ln(−x)−16ζ(2)ln3(−x)−1120ln5(−x)+Li5(1x)x=2を代入してLi5(2)=2ln2ζ(4)+13ln32ζ(2)−1120ln52+Li5(12)−iπ24ln42これを先の結果に代入して∫01ln(1−x)ln3(1+x)1+x dx=−6Li5(12)+6ζ(5)−6ln2ζ(4)+3ln22ζ(3)−ln32ζ(2)+14ln52
バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。