0

二重シグマの変形方法

313
0
$$$$

ΣΣ(゚Д゚)

\begin{align} \sum^n_{k=1}f(k)\sum^k_{i=1}g(i) &=\sum^n_{k=1}g(k)\sum^n_{i=k}f(i) \end{align}

(横に長いため小さめにしています)
\begin{align} \textstyle{\sum\limits^n_{k=1} \!{\small f(k)}\!\sum\limits^k_{i=1}\!{\small g(i)}} &=\underset{}{\small f(1)g(1)\,+\,f(2)\big(g(1)+g(2)\big)\,+\,f(3)\big(g(1)+g(2)+g(3)\big)\,+\cdots+\,f(n)\big(g(1)+g(2)+\cdots+g(n)\big)}\\ &=\underset{}{\small\big(f(1)+f(2)+\cdots+f(n)\big)g(1)+\big(f(2)+f(3)+\cdots+f(n)\big)g(2)+\big(f(3)+f(4)+\cdots+f(n)\big)g(3)+\cdots+f(n)g(n)}\\ &=\underset{}{\textstyle\sum\limits^n_{k=1}\hspace{-1.2mm}\raise{-0.4mm}{\biggl(}\hspace{-1mm}\sum\limits^n_{i=k}{\small f(i)}\hspace{-1.5mm}\raise{-0.4mm}{\biggl)}\hspace{-0.2mm}{\small g(k)}}\\ &={\textstyle\sum\limits^n_{k=1}\!{\small g(k)}\!\sum\limits^n_{i=k}\!{\small f(i)}} \end{align}

投稿日:2023928
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。

投稿者

nanaSi
nanaSi
9
1075
「満足する」(=「満たす」)は語呂が好きなので使っているだけです. 特に深い意味はありません.

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中