2

Diaryの積分を解いてみた2

64
0

期間真っ只中

テスト期間真っ只中ですがやります。記事短めです。

問題

1x(x2+1)x+x2+1dx

今回は簡単め。解きましょう。

表題の積分をIとおく。Iについて、x=sinhθdx=coshθdθ
I=coshθsinhθsinh2θ+1sinhθ+sinh2θ+1dθ=1sinhθeθdθ
=21e2θ1dθ
e2θ1=tdθ=tt2+1dt
I=21ttt2+1dt=2arctant+C=2arctane2θ1+C
e2θ=e2arsinhx=(x+x2+1)2より、
I=2arctanx+1+x2+1x1+x2+1+C

conclusion

べっかいしょうかい!
I=2arcsin(xx2+1)+C
まっ!? まあ?? 私の式のほうが対称性あってきれいですし??
...と冗談はさておき、Diaryで簡単な積分が出たときは、いかに簡単できれいな形にするかがポイント...であってほしい。
別解の勝ちです。ほかに面白い答えが見つかったらぜひ書き込んでいってね。以上。

投稿日:21日前
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。
バッチを贈って投稿者を応援しよう

バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。

投稿者

関数をつくろう(掛詞)

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中
  1. 期間真っ只中
  2. 問題
  3. conclusion