We set
\begin{eqnarray}
A(k)\eq\int_0^\infty\f{x^2+kx+1}
{x^4+1}\tan^{-1}\left(\f{1}{x}\right)dx,\\
B(k)\eq\int_0^\infty\f{x^2+kx+1}{x^4+1}\tan^{-1}\left({x}\right)dx.
\end{eqnarray}
Solve the followings;
Prove $A(k)=B(k)$ for any $k\in{\bf R}$.
Solve constants $a,b$ of $\f{x^2+kx+1}{x^4+1}=\f{a}{x^2+1+\sqrt{2}x}+ \f{b}{x^2+1-\sqrt{2}x}$ for any $x\in{\bf R} $.
Solve $A(k)$. (hint $\tan^{-1}(x)+\tan^{-1}(1/x)=\f{\pi}{2}$ and $x^2+1+\sqrt{2}x=(x+1/\sqrt{2})^2+1/2$).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
沖縄数学アカデミーHP
-
沖縄数学アカデミー@instagram
-
沖縄数学アカデミー@youtube
-
中の人@instagram