この記事では, 超幾何級数の部分和を${}_3F_2$で表すWhippleによる次の公式を示す.
$\Re(1+a+b-c)>0$のとき, 自然数$n$に対して,
\begin{align}
\sum_{k=0}^{n-1}\frac{(a,b)_k}{k!(c)_k}&=\frac{\Gamma(1+a-c)\Gamma(1+b-c)}{\Gamma(1-c)\Gamma(1+a+b-c)}\left(1-\frac{(a,b)_n}{(c-1)_nn!}\F32{1-a,1-b,n}{2-c,n+1}1\right)
\end{align}
が成り立つ.
\begin{align}
\F32{1-a,1-b,n}{2-c,n+1}{1}&=n\sum_{0\leq k}\frac{(1-a,1-b)_k}{k!(2-c)_k(k+n)}
\end{align}
と書くことができるので, $a\mapsto 1-a,b\mapsto 1-b,c\mapsto 2-c$とすると, 定理1は
\begin{align}
\sum_{k=0}^{n-1}\frac{(1-a,1-b)_k}{k!(2-c)_k}&=\frac{\Gamma(c-a)\Gamma(c-b)}{\Gamma(c-1)\Gamma(1+c-a-b)}\left(1-\frac{n(1-a,1-b)_n}{n!(1-c)_n}\sum_{0\leq k}\frac{(a,b)_k}{k!(c)_k(k+n)}\right)
\end{align}
つまり,
\begin{align}
\sum_{0\leq k}\frac{(a,b)_k}{k!(c)_k(n+k)}&=\frac{n!(1-c)_n}{n(1-a,1-b)_n}\left(1-\frac{\Gamma(c-1)\Gamma(1+c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\sum_{k=0}^{n-1}\frac{(1-a,1-b)_k}{k!(2-c)_k}\right)
\end{align}
となるので, これは超幾何関数のモーメント
\begin{align}
\int_0^1t^{n-1}\F21{a,b}{c}{t}\,dt&=\sum_{0\leq k}\frac{(a,b)_k}{k!(c)_k(n+k)}
\end{align}
を有限和で表す公式を与えていると見ることもできる. よって, これを示すことにする.
$f_k:=\frac{(a,b)_k}{k!(c)_k}$とすると, $k(k+c-1)f_k-(k+a-1)(k+b-1)f_{k-1}=0$である. よって,
十分大きく$c$を取っておくことによって,
\begin{align}
g_n:=\sum_{0\leq k}\frac{f_k}{n+k}
\end{align}
として,
\begin{align}
0&=\sum_{0\leq k}\frac{k(k+c-1)f_k-(k+a-1)(k+b-1)f_{k-1}}{n+k}\\
&=\sum_{0\leq k}\left(\frac{k(k+c-1)f_k}{n+k}-\frac{(k+a)(k+b)f_{k}}{n+k+1}\right)\\
&=\sum_{0\leq k}\left(\frac{k(k+c-1)-n(n+1-c)}{n+k}f_k-\frac{(k+a)(k+b)-(n+1-a)(n+1-b)}{n+k+1}f_{k}\right)+n(n+1-c)g_n-(n+1-a)(n+1-b)g_{n+1}
\end{align}
だから, Gaussの超幾何定理より,
\begin{align}
(n+1-a)(n+1-b)g_{n+1}-n(n+1-c)g_n&=\sum_{0\leq k}\left(\frac{k(k+c-1)-n(n+1-c)}{n+k}f_k-\frac{(k+a)(k+b)-(n+1-a)(n+1-b)}{n+k+1}f_{k}\right)\\
&=\sum_{0\leq k}((k-n+c-1)f_k-(k-n-1+a+b)f_k)\\
&=(c-a-b)\sum_{0\leq k}f_k\\
&=\frac{\Gamma(c)\Gamma(1+c-a-b)}{\Gamma(c-a)\Gamma(c-b)}
\end{align}
となる. よって両辺に$\frac{(1-a,1-b)_n}{n!(1-c)_{n+1}}$を掛けて足し合わせることによって,
\begin{align}
\frac{(1-a,1-b)_n}{(n-1)!(1-c)_n}g_n-\frac{(1-a)(1-b)}{1-c}g_1&=\frac{\Gamma(c)\Gamma(1+c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\sum_{k=1}^{n-1}\frac{(1-a,1-b)_k}{k!(1-c)_{k+1}}
\end{align}
ここで,
\begin{align}
g_1&=\sum_{0\leq k}\frac{(a,b)_k}{(k+1)!(c)_k}\\
&=\frac{c-1}{(a-1)(b-1)}\sum_{0\leq k}\frac{(a-1,b-1)_k}{k!(c-1)_k}\\
&=\frac{c-1}{(a-1)(b-1)}\frac{\Gamma(c-1)\Gamma(1+c-a-b)}{\Gamma(c-a)\Gamma(c-b)}
\end{align}
を用いて整理すれば
\begin{align}
g_n&=\frac{n!(1-c)_n}{n(1-a,1-b)_n}\left(1-\frac{\Gamma(c-1)\Gamma(1+c-a-b)}{\Gamma(c-a)\Gamma(c-b)}\sum_{k=0}^{n-1}\frac{(1-a,1-b)_k}{k!(2-c)_k}\right)
\end{align}
を得る.
特に$c\mapsto 1$とすると以下を得る.
\begin{align} \sum_{k=0}^{n-1}\frac{(a,b)_k}{k!^2}&=\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}\frac{n^2(a,b)_n}{n!^2}\sum_{0\leq k}\frac{(1-a,1-b)_k}{k!^2(n+k)} \end{align}
$a=b=\frac 12$とした特別な場合として次のRamanujanによる公式を得る.
\begin{align} \sum_{k=0}^{n-1}\frac{\left(\frac 12\right)_k^2}{k!^2}&=\pi\frac{\left(\frac 12\right)_n^2}{(n-1)!^2}\sum_{0\leq k}\frac{\left(\frac 12\right)_k^2}{k!^2(n+k)} \end{align}