យើងឃើញថា
$$\int_0^xe^t\mathrm{d}t=e^x-1
\Rightarrow e^x-\int_0^xe^t\mathrm{d}t=1
$$
តាង$\varphi:C(\mathbb{R})\to C(\mathbb{R});f(x)\mapsto \int_0^xf(t)\mathrm{d}t$
នាំឲ្យ
\begin{align}
e^x-\varphi(e^x)&=1\\
\Rightarrow (1-\varphi)(e^x)&=1\\
\Rightarrow e^x&=(1-\varphi)^{-1}(1)\\
&=(1+\varphi+\varphi^2+\varphi^3+\cdots)(1)\\
&=1+\varphi(1)+\varphi^2(1)+\varphi^3(1)+\cdots\\
\end{align}
ដោយ
\begin{align}
\varphi(1)&=\int_0^x1\mathrm{d}t=x\\
\varphi^2(1)&=\varphi(\varphi(1))=\varphi(x)=\int_0^x t \mathrm{d}t=\frac{x^2}{2!}\\
\varphi^3(1)&=\varphi(\varphi^2(1))=\varphi\Bigl(\frac{x^2}{2!}\Bigr)=\int_0^x \frac{t^2}{2!} \mathrm{d}t=\frac{x^3}{3!}\\
&\vdots
\end{align}
ដូចនេះ យើងបាន
$$
\large
e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots
$$