A数列の計算表です。間違いなどありましたら教えて下さい。
$a\in \mathbb{N} $について$ (a^n) = (\underbrace{a,...,a}_{n個})$です
$ \uparrow $はクヌースの矢印表記です。
$A$ 数列内の数字$a$について$ a\underbrace{,...,}_{n個}a$ を$ a^n$ で略記し、
数字の列$s$と数字$b$について$(s,b\underbrace{,..,}_{n個}b)$を$(s,b)^n$で略記しています。
$n$は十分大きな数とします。
\begin{split}
()[0] &= 0\\
(0)[0]
&= ()[0+1]\\
&= ()[1] \\
&=1 \\
(0,0)[0]
&= (0)[1] \\
&=()[1+1] \\
&= 2\\
(0^{n})[0]
&= ()[n] \\
&= n\\
(0^n)[n]
&= ()[n+n]\\
&= 2n\\
(1,1)[n]
&= (1,0)^{n}[n]\\
&= (1,0^{n})[n] \\
&= (0^{2n})[2n]\\
&= 2^2n\\
&= 4n \\
(1,1,1)[n]
&= (1,1,0^n)[n]\\
&= (1,1)[2n] \\
&= (1,0^{2n})[2n]\\
&= (1)[4n]\\
&= (0^{4n})[4n]\\
&= 2^3n\\
&= 8n \\
(1^n)[n]
&= ()[2^nn]\\
&=2^nn > 2\uparrow n\\
(2)[n]
&= (1^n)[n] > 2\uparrow n\\
(2,1)[n]
&= (2,0^n)[n]\\
&= (2)[2n]\\
&= (1^{2n})[2n]\\
&= 2^{2n}\cdot2n > 2\uparrow 2n\\
(2,1,1)[n]
&= (2,1,0^n)[n]\\
&= (2,1)[2n]\\
&= (2,0^{2n})[2n]\\
&= (2)[4n]\\
&= (1^{4n})[4n]\\
&= 2^{2^2n}\cdot 2^2n > 2\uparrow 2\uparrow n\\
(2,1^n)[n]
&> \underbrace{2\uparrow \cdots \uparrow 2 }_{n個} \uparrow n\\
&> 2\uparrow \uparrow n \uparrow n \\
&\approx 2\uparrow \uparrow n\\
(2,2)[n]
&=(2,1^n)[n] > 2\uparrow \uparrow n\\
(2,2,1)[n]
&= (2,2,0^n)[n]\\
&= (2,2)[2n] > 2 \uparrow \uparrow 2n\\
(2,2,1,1)[n]
&= (2,2,1,0^n)[n]\\
&= (2,2,1)[2n] \\
&> 2\uparrow \uparrow (2\uparrow 2)n\\
(2,2,1^n)[n]
&> 2 \uparrow \uparrow(\underbrace{2\uparrow\cdots\uparrow2}_{n個})n\\
&>2\uparrow\uparrow(2\uparrow\uparrow n)n \\
&> 2\uparrow\uparrow(2\uparrow\uparrow n)\\
(2,2,2)[n]
&= (2,2,1^n)[n] > 2\uparrow\uparrow(2\uparrow\uparrow n+1)\\
(2,2,2,2)[n]
&= (2,2,2,1^n)[n] > 2\uparrow\uparrow(2\uparrow\uparrow(2\uparrow\uparrow n+1) )\\
(2^n)[n]
&> \underbrace{2\uparrow\uparrow\cdots\uparrow\uparrow2}_{n個}\uparrow\uparrow n\\
&\approx 2\uparrow\uparrow\uparrow n
=2\uparrow^3 n\\
(3)[n]
&= (2^n)[n] > 2\uparrow^3 n\\
(3,1)[n]
&= (3)[2n] > 2\uparrow^3 2n\\
(3,1^n)[n]
&= (3)[2\uparrow n] > 2\uparrow^3 (2\uparrow n)\\
(3,2)[n]
&= (3,1^n)[n] > 2\uparrow^3 (2\uparrow n)\\
(3,2,2)[n]
&= (3,2)[2\uparrow n] > 2\uparrow^3 (2\uparrow 2\uparrow n)\\
(3,2^n)[n] &> 2\uparrow^3(2\uparrow^2 n)+2 > 2\uparrow^3(2\uparrow^2 n)\\
(3,3)[n]
&= (3,2^n)[n] > 2\uparrow^3(2\uparrow^2 n)\\
(3,3,3)[n]
&=(3,3,2^n)[n]\\
&> (3,3)[2\uparrow^3 n] \\
&> 2\uparrow^3(2\uparrow^2 2\uparrow^3 n) \\
&> 2\uparrow^3 2\uparrow^3n\\
(4)[n]
&= (3^n)[n]\\
&> \underbrace{2\uparrow^3\cdots\uparrow^3 2}_{n個}\uparrow^3 n\\
&\approx 2\uparrow^4 n\\
(5)[n] &> 2\uparrow^5 n\\
(m)[n] &> 2\uparrow^m n\\
(n)[n] &> 2\uparrow^n n \approx f_{\omega}(n)\\
\end{split}
また$ A(n,n) $をアッカーマン関数として
$ (n)[n] > A(n,n) $