1

[test] 板書メモ: 初期値問題の解の存在

53
0

Warning: The accuracy of the content has not been checked, including the language per se. Please proceed at your own risk.

Lipschitz condition

Let t0,a be real numbers where a>0 and D be an open set in Rn.
f(t,x):Rn+1Rn satisfies Lipschitz condition over |tt0|a, xDRn when
f(t,x1)f(t,x2)Lx1x2(x1,x2D,ts.t.|tt0|<a)
f is Lipschitz continuous if f satisfies the condition above.

L is a constant independent of x. Moreover, if L is also independent of t, this condition is called Uniformly Lipschitz condition.

Lipschitz continuous continuous.
()f(t,x1)f(t,x2)Lx1x2f(t,x1)f(t,x2)0as x1x20.

Scalar function fC1([a,b]) is Lipschitz continuous.
() By Taylor's theorem.

|x| is continuous but not Lipschitz continuous.

Initial value problem

Given a system:
{x˙=f(t,x)x(t0)=x0
where xD:={xxx0d}Rn,tt0a and a,d>0, let us suppose that:
(a) f(t,x) is continuous on G:=[t0a,t0+a]×D.
(b) f(t,x) is uniformly Lipschitz continuous.
Then, there exists δ>0 such that the above system has a unique solution on Iδ:=[t0δ,t0+δ].
We can take δ:=inf(a,dM) where M=supGf.

Assume there exist a solution x like this:
x(t)=x0+0tf(t,x)dt
and let xk be:
xk(t)={x0(k=0)x0+t0tf(t,xk1)dt(k>0)
which converges to x as n.
Let Ω:={(t,x)xx0M|tt0|,|tt0|δ}. if δ is small enough, ΩG=[t0a,t0+a]×D.

The graph of xk(t) is contained in Ω for Iδ.
We show the graph of xk(t) (k=1,2,) is contained in G.
[k=0]: Apparent.
[k1]: Suppose the graph of xk1(t) is contained in Ω. i.e. (t,xk1(t))Ω(tIδ).
xk(t)x0=|t0tf(t,xk1(t))dt|Mt0t|dt|=M|tt0|.
(t,xk(t))ΩG.

Next, we show {xk(t)} converges to a certain function over Ω.
xk(t)=x0(t)+l=1k(xl(t)xl1(t)).
xk(t)xk1(t)=t0tf(s,xk1(s))f(s,xk2(s))dsxk(t)xk1(t)=t0tf(s,xk1(s))f(s,xk2(s))dsLt0txk1(s)xk2(s)dtLsupt0stxk1(s)xk2(s)|tt0|Lδsupt0stxk1(s)xk2(s).
By taking δ12L,

xk(t)xk1(t)12supsIδxk1(s)xk2(s)suptIδxk(t)xk1(t)12suptIδxk1(t)xk2(t)12k1suptIδx1(t)x0(t)=Const.

limkxk(t)xk1(t)=0.
By Weierstrass dominated convergence theorem:
xk(t)Ck,k=0Ck<k=0xk(t)converges,
thus k=1(xk(t)xk1(t)) converges uniformly in t.
So x, namely the limit of xk(t)
x(t)=limkxk(t)=x0+limkl=1k(xl(t)xl1(t))
exists.
f(t,xk(t))f(t,x(t))Lxk(t)x(t)LsuptIδxk(t)x(t)suptIδf(t,xk(t))f(t,x(t))LsuptIδxk(t)x(t)0(k)
So f(t,xk(t))f(t,x(t))(k) uniformly in t.

x(t)=x0+limkt0tf(s,xk1(s))ds=x0+t0tlimkf(s,xk1(s))ds(uniform convergence)=x0+t0tf(s,x(s))ds

By assumption, f(s,x(s)) is continuous in s. So t0tf(s,x(s))ds is a C1 function.
We can then differentiate x and we have
x˙=ddtx0+ddtt0tf(s,x(s))ds=f(s,x(s)).

投稿日:2023424
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。
バッチを贈って投稿者を応援しよう

バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。

投稿者

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中