[定理01]
-1$\leqq$$r$$\lt$1で,
$$ \sum_{n=1}^{∞}\frac{r^n}{n}=- \log(1-r) $$
$r$=1では発散する.
[証明]
[11] 0$\lt$$r$$\lt$1のとき,
$$ \sum_{n=1}^{N}\frac{r^n}{n}=\sum_{n=1}^{N}r^n\int_{0}^{1} x^{n-1} dx=r\int_{0}^{1} \frac{1- (rx)^{N} }{1-rx}dx$$
ここで,$N$$\rightarrow$0のとき,
$$\left| \int_{0}^{1} \frac{(rx)^{N} }{1-rx}dx\right| \leqq\left| \int_{0}^{1} \frac{x^{N} }{1-r}dx\right| \leqq\frac{1}{N+1}\frac{1}{1-r}\rightarrow0 $$
したがって,
$$\sum_{n=1}^{N}\frac{r^n}{n}=\rightarrow r\int_{0}^{1} \frac{1}{1-rx}dx$$
$$r\int_{0}^{1} \frac{1}{1-rx}dx=\int_{0}^{1} \frac{1}{ \frac{1}{r}-x}dx=- \log(1-r). □□$$
[12]-1$\lt$$r$$\lt$0のとき,0$\lt$$r^{2}\lt$1から,
$$\sum_{n=1}^{2N}\frac{r^n}{n}+\sum_{n=1}^{2N}\frac{(-r)^n}{n}=2\sum_{n=1}^{N}\frac{ r^{2n} }{2n}=\sum_{n=1}^{N}\frac{r^{2n}}{n}$$
$$\sum_{n=1}^{2N}\frac{r^n}{n}=-\sum_{n=1}^{2N}\frac{(-r)^n}{n}+\sum_{n=1}^{N}\frac{r^{2n}}{n} $$
$$\sum_{n=1}^{2N}\frac{r^n}{n}=\rightarrow \log(1+r) - \log(1-r^2)=- \log(1-r) .□□$$
[13]$r=-1$のとき,
$$ \sum_{n=1}^{N}\frac{(-1)^n}{n}=\sum_{n=1}^{N}(-1)^n\int_{0}^{1} x^{n-1} dx=-\int_{0}^{1} \frac{1- (-x)^{N} }{1+x}dx$$
ここで,$N$$\rightarrow$0のとき,
$$\left| \int_{0}^{1} \frac{(-x)^{N} }{1+x}dx\right| \leqq\left| \int_{0}^{1} {x^{N} }dx\right| \leqq\frac{1}{N+1} \rightarrow0 $$
したがって,
$$\sum_{n=1}^{N}\frac{(-1)^n}{n}=\rightarrow -\int_{0}^{1} \frac{1}{1+x}dx=- \log2. □□$$
以上から,定理01は成り立つ.□□
[定理02]
D$\gt$0,-1$\leqq$$r$$\lt$1で
$$ \sum_{n=0}^{∞} \frac{r^n}{1+Dn}= \int_{0}^{1} \frac{1}{1-rx^D}dx$$
$r$=1では発散する.
とくに,
$$ \sum_{n=0}^{∞} \frac{(-1)^n}{1+Dn}= \int_{0}^{1} \frac{1}{1+x^D}dx$$
[21] 0$\lt$$r$$\lt$1のとき, $$ \sum_{n=0}^{N-1}\frac{r^n}{1+Dn}=\sum_{n=0}^{N-1}r^n\int_{0}^{1} x^{Dn} dx=\int_{0}^{1} \frac{1- (rx^D)^{N} }{1-rx^D}dx$$
ここで,$N$$\rightarrow$0のとき,
$$\left| \int_{0}^{1} \frac{(rx^D)^{N} }{1-rx^D}dx\right| \leqq\left| \int_{0}^{1} \frac{x^{DN} }{1-r}dx\right| \leqq\frac{1}{DN+1}\frac{1}{1-r}\rightarrow0 $$
したがって,
$$\sum_{n=0}^{N-1}\frac{r^n}{1+Dn}=\rightarrow \int_{0}^{1} \frac{1}{1-rx^D}dx. □□$$
[22]-1$\lt$$r$$\lt$0のとき,0$\lt$$r^{2}\lt$1から,
$$\sum_{n=0}^{2N-1}\frac{r^n}{1+Dn}=\sum_{n=0}^{N-1}\frac{r^{2n}}{1+(2n)D}+\sum_{n=0}^{N-1}\frac{ r^{2n+1} }{1+(2n+1)D}$$
$$\sum_{n=0}^{N-1}\frac{r^{2n}}{1+(2n)D}\rightarrow\int_{0}^{1} \frac{1}{1-r^2x^{2D}}dx. □□$$
$$\sum_{n=0}^{N-1}\frac{ r^{2n+1} }{1+(2n+1)D}= \frac{r}{1+D} \sum_{n=0}^{N-1}\frac{ r^{2n} }{1+n( \frac{2D}{D+1} )}$$
$$ \rightarrow\frac{r}{1+D} \int_{0}^{1} \frac{1}{1-r^2x^{ \frac{2D}{1+D} }}dx.$$
$$=\frac{r}{1+D} (1+D)\int_{0}^{1} \frac{y^D}{1-r^2y^{2D}}dy=\int_{0}^{1} \frac{rx^D}{1-r^2x^{2D}}dx.$$
$$\sum_{n=0}^{2N-1}\frac{r^n}{1+Dn}\rightarrow\int_{0}^{1} \frac{1}{1-r^2x^{2D}}dx+\int_{0}^{1} \frac{rx^D}{1-r^2x^{2D}}dx.$$
$$=\int_{0}^{1} \frac{1}{1-rx^{D}}dx.$$
[23]$r=-1$のとき,
$$\sum_{n=0}^{2N-1}\frac{(-1)^n}{1+Dn}=\sum_{n=0}^{N-1}\frac{1}{1+(2n)D}-\sum_{n=0}^{N-1}\frac{ 1 }{1+(2n+1)D}$$
$$ =\int_{0}^{1} \sum_{n=0}^{N-1}( x^{2nD
}-x^{(2n+1)D})dx $$
$$=\int_{0}^{1} (1-x^D) \frac{1- (x^{2D})^{N} }{1-x^{2D}} dx=\int_{0}^{1} \frac{1 }{1+x^D} dx-\int_{0}^{1} \frac{x^{2DN} }{1+x^D} dx$$
ここで,$N$$\rightarrow$0のとき,
$$\left| \int_{0}^{1} \frac{x^{2DN} }{1+x^D}dx\right| \leqq\left| \int_{0}^{1} {x^{2DN} }dx\right| \leqq\frac{1}{2DN+1} \rightarrow0 $$
したがって,
$$\sum_{n=0}^{N-1}\frac{(-1)^n}{1+Dn}=\int_{0}^{1} \frac{1}{1+x^D}dx. □□$$
以上から,定理02は成り立つ.□□