$$\newcommand{mathjax}[0]{大問1(正負の計算) (1) 3÷$\frac{-3 ^{2} }{8}$+{3-7×$(-2)^{2}$}×$(-0.6)^{3}$ (2) $(-3)^{2}$÷$\frac{3}{7}$+$(-1)^{3}$×22÷$(-5)^{2}$ (3) $-3^{2}$+4÷(-$\frac{2}{3}$)÷(-$\frac{1}{3}$)+$(-3)^{2}$ (4) {$(- \frac{3}{4} )^{2}$÷$(- \frac{1}{2} )^{3}$}÷{$\frac{ (-3)^{2} }{4}$÷$( \frac{1}{2} )^{2}$} (5) ($3.5^{2}$-$1.5^{2}$)×0.5-(0.6-$\frac{6}{5}$)÷$\frac{3}{5}$ 解説 大問1 (1)3×(-$\frac{8}{9}$)+(3-7×4)×$( \frac{3}{5} )^{3}$=-$\frac{8}{3}$+(-25)×(-$\frac{27}{125}$)=-$\frac{8}{3}$+$\frac{27}{5}$=-$\frac{40}{15}$+$\frac{81}{15}$=$\frac{41}{15}$ (2)}
\newcommand{Tex}[0]{大問1(正負の計算) (1) 3÷$\frac{-3 ^{2} }{8}$+{3-7×$(-2)^{2}$}×$(-0.6)^{3}$ (2) $(-3)^{2}$÷$\frac{3}{7}$+$(-1)^{3}$×22÷$(-5)^{2}$ (3) $-3^{2}$+4÷(-$\frac{2}{3}$)÷(-$\frac{1}{3}$)+$(-3)^{2}$ (4) {$(- \frac{3}{4} )^{2}$÷$(- \frac{1}{2} )^{3}$}÷{$\frac{ (-3)^{2} }{4}$÷$( \frac{1}{2} )^{2}$} (5) ($3.5^{2}$-$1.5^{2}$)×0.5-(0.6-$\frac{6}{5}$)÷$\frac{3}{5}$ 解説 大問1 (1)3×(-$\frac{8}{9}$)+(3-7×4)×$( \frac{3}{5} )^{3}$=-$\frac{8}{3}$+(-25)×(-$\frac{27}{125}$)=-$\frac{8}{3}$+$\frac{27}{5}$=-$\frac{40}{15}$+$\frac{81}{15}$=$\frac{41}{15}$ (2)}
$$
はじめに
中学数学とは
中学数学とは高校数学に向けて勉強する数学です。私はそれを数学基礎と呼んでいます。もちろん、中学数学でつまずいたら、高校数学はできません。
この本の紹介
この本は中学数学の計算を主にメインとしています。計算問題はグラフや図形問題を解くための基礎です。しっかり身につけましょう!!
解き方
・プランA{基本}
一般的な解き方であり、学校の授業でやる解き方です。
・プランB{応用}
学校の授業でやった知識を使い、解く時間や、計算量を少なくする。
・プランC{高校数学}
中学数学に高校数学を取り入れることにより、最高の裏技となるのですが、理解できなくても大丈夫です。