Show that: / 以下を示せ:∫0∞ln(x2+1)x2+1dx=πln2
Let x=tanθ, dx=sec2θdθ.
∫0∞ln(x2+1)x2+1dx=∫0π/2ln(sec2θ)sec2θsec2θdθ=−2∫0π/2ln(cosθ)dθ
Let I=∫0π/2ln(cosθ)dθ. Then θ→π2−θ gives I=∫0π/2ln(sinθ)dθ.
Hence 2I+π2ln2=∫0π/2(ln(cosθ)+ln(sinθ)+ln2)dθ=∫0π/2ln(sin2θ)dθ
By symmetry, ∫0π/2ln(sin2θ)dθ=2∫0π/4ln(sin2θ)dθ=∫0π/2ln(sinϕ)dϕ=I, where ϕ=2θ. Hence 2I+π2ln2=I; I=−π2ln2; ∫0∞ln(x2+1)x2+1dx=πln2.
バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。