$$$$
問題
\begin{align*}
\sum_{n=2}^{\infty} \frac{\zeta(n)}{n2^{2n}} ~=~?
\end{align*}
解答
\begin{align*}
&\sum_{n=2}^{\infty} \frac{\zeta(n)}{n2^{2n}} \\
&= \sum_{k=1}^{\infty} \sum_{n=2}^{\infty} \frac{1}{n} \left(\frac{1}{4k}\right)^n \\
&= -\sum_{k=1}^{\infty}\left(\ln\left(1 - \frac{1}{4k}\right) + \frac{1}{4k}\right) \\
&= -\lim_{m\to \infty} \left\{\ln\left(\prod_{k=1}^{m} \left(1 - \frac{1}{4k}\right) \right) + \frac{H_m}{4} \right\}\\
&= \ln \Gamma\left(\frac34\right)-\lim_{m\to \infty}\left(\ln\Gamma\left(m + \frac34\right) - \ln\Gamma\left(m+1\right) + \frac{H_m}{4}\right) \\
\end{align*} ここで,Stirlingの公式より$m\to \infty$のとき, \begin{align*}
&\ln\left(m+\frac34\right) - \ln\Gamma(m+1) \\
&\approx \ln\left(\sqrt{2\pi \left(m - \frac14\right)}\left(\frac{m-\frac14}{e}\right)^{m-\frac14}\right) - \ln\left(\sqrt{2\pi m}\left(\frac{m}{e}\right)^m\right) \\
&= \ln\left(m-\frac14\right) + \left(m-\frac14\right)\left(\ln\left(m-\frac14\right) - 1\right) - \ln(m) - m(\ln(m)-1) \\
&= \left(m + \frac12\right) \ln \left(1-\frac{1}{4m}\right) + \frac{1- \ln\left(m - \frac14\right)}{4}
\end{align*} よって, \begin{align*}
&\lim_{m\to \infty}\left(\ln\Gamma\left(m + \frac34\right) - \ln\Gamma\left(m+1\right) + \frac{H_m}{4}\right) \\
&= \lim_{m\to \infty} \left(m + \frac12\right) \ln \left(1-\frac{1}{4m}\right) + \frac14\lim_{m\to \infty} \left(1 + H_m - \ln\left(m - \frac14\right)\right) \\
&= \frac14 \lim_{m\to \infty} \frac{\ln\left(1 - \frac{1}{m}\right)}{1/m} + \frac14 + \frac14\lim_{m\to \infty} \left(H_m - \ln\left(m - \frac14\right)\right) \\
&= -\frac14 \lim_{m\to \infty} \frac{1}{1 - \frac{1}{m}} + \frac14 + \frac{\gamma}{4} \\
&= \frac{\gamma}{4}
\end{align*} したがって, \begin{align*}
&\sum_{n=2}^{\infty} \frac{\zeta(n)}{n2^{2n}} \\
&= \ln \Gamma\left(\frac34\right)-\lim_{m\to \infty}\left(\ln\Gamma\left(m + \frac34\right) - \ln\Gamma\left(m+1\right) + \frac{H_m}{4}\right) \\
&= \ln\Gamma\left(\frac34\right) - \frac{\gamma}{4}
\end{align*}