∫tan3xdx
∫02π1+cosxdx
∫011−x1+xdx
∫1212xdx
∫1sinxdx
∫11+x2dx
∫x3x−5dx
∫1exlogxdx
∫(logx)2dx
∫023x3+12x+1x2+4dx
∫1x(1+logx)dx
∫1x−xdx
∫4321x2x−1dx
∫1x2+6x+13dx
∫xcos2xdx
∫log2xdx
∫x−1(x+1)(x2+1)dx
∫x+2x(x+1)2dx
∫1sin2xdx
∫0π2x3cosx2dx
∫tanxlog(cos2x)dx
∫1cos3θdx
∫11+sinxdx
∫x2xdx
∫23x−1x2exdx
∫1sinxcosxdx
∫2logxdx
∫011x3+1dx
∫02x2−2x+1dx
∫1cos4xdx
∫−11x21+exdx
∫sin1xx3dx
∫tanxsin2xdx
∫xexsinxdx
∫sin(logx)dx
∫01(x+2x3)1+2x2dx
∫log(logx)xlogxdx
∫0π2cosxsinx+cosxdx
∫exdx
∫1x(logx)2dx
∫xsinxcosxdx
∫xexsinxcosxdx
∫0πxsinx8+sin2xdx
∫01x61+x14dx
∫1x4+xdx
∫02020π|sin(2020x)|dx
∫ee2x1logxdx
∫xx(logx+1)dx
∫12x(x−3)6dx
∫11−e−xdx
∫012log3ex1+e2xdx
∫01log(x2+1)dx
∫12(x3+2x2+5x)dx
∫0πxsinx3+cos2xdx
∫logxx2dx
∫(logx2)2dx
∫cos2xcos4xdx
∫1x(4−(logx)2)dx
∫0πsinx1+cosxdx
∫221xx2−1dx
∫1x1−x2dx
∫e(ex+x)dx
∫132−5xdx
∫(logx+3)2xdx
∫131x2log1+x2dx
∫x(x2+2)(x2+3)dx
∫0π2(cosx)3(sinx)3+(cosx)3dx
∫02exex+e2−xdx
∫012x+2x2+x+1dx
∫0π4x2xsinx+cosxdx
∫−11x31+x2dx
∫1x(x+1)(x+2)dx
∫4(3+3x−x2)(x−1)2(x−1)dx
∫x1−x2dx
∫−11sin2(πx)1+exdx
∫(x2−2x)cos2xdx
∫01x4e−1dx
∫14(x+2)23xdx
∫1cosxdx
∫0πe2xsinxdx
∫exsin2xdx
∫01x5x3+1dx
∫01x1+xdx
∫121x1x−1dx
∫3x3x+log3dx
∫tan5xdx
∫24log(9−x)log(9−x)+log(x+3)dx
∫01log(1+x)1+x2dx
∫cosxcos2xcos3xdx
∫01f−1(x)dx,f(x)=tanx(0≤x≤π4)
∫0π11+(sinx)cosxdx
∫xxx…dx
∫logx(x+1)3dx
∫eeelogx⋅log(logx)xdx
∫log1+x1−xdx
∫02πsin(sinx−x)xdx
∫x2x(2logx+2)dx
∫0π2sin2xcos(cosx)dx
∫0π2|sinx−3cosx|dx
∫0π4tanxdx
予備校のノリで学ぶ「大学の数学・物理」今週の積分#1-#100より https://youtu.be/vm7LcyupMs0
バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。