双複素解析入門 第11回
前回でRinglebの定理を紹介できたので,今回から零点の構造について再び考察します.3回前の話なので少し思い出しておきましょう.双複素多項式は
のように,因数分解の一意性が成り立ちませんでした.成り立たないからそれで何もできないか,と言われたらそうではありません.あがきます.これが数学の研究です.因数分解の一意性は成り立ちそうにありませんが,因数定理であれば成り立ちます.Ringlebの定理により双複素正則関数は2つの複素正則関数で表せるので,その2つの複素正則関数に複素関数における因数定理を適用してやれば,なんとか手は動きそうです.
さて,因数定理を証明しようと思いますが,ちょっと待ってください.双複素数は零因子を持つ環です.零因子を込めて議論を進めなければなりません.なので,まずは零点の定義を拡張することにします.
いつも通り関数の値が消えるような点のことを強零点といい,関数の値が零因子となるような点のことを弱零点と呼ぼう,ということです.
まず
となります.零因子というのは,次のような集合で表されたことを思い出しましょう.
よって,今回の
となります.そうなのです.弱零点は,そもそも"点"ではないのです.
それでは今回はここまでにします.次回は因数定理について考察をします.ありがとうございました.