$$Q_1=\prod_{n=1}^{\infty}(1-q^{2n})$$
$$Q_2=\prod_{n=1}^{\infty}(1+q^{2n})^2$$
$$Q_3=\prod_{n=1}^{\infty}(1+q^{2n-1})^2$$
$$Q_4=\prod_{n=1}^{\infty}(1-q^{2n-1})^2$$
ただし$q=e^{\pi i \tau}$ $,\tau=\frac{\omega_1}{\omega_0}$
$$\theta_2=2q^{\frac{1}{4}}Q_1Q_2$$
$$\theta_3=Q_1Q_3$$
$$\theta_4=Q_1Q_4$$
$Q_2Q_3Q_4=1$
$(\theta_2\theta_3\theta_4)^4=16qQ_1^{12}$
$(\theta_2)^4+(\theta_4)^4=(\theta_3)^4$
$$a:= \frac{1}{3}\left( \frac{\pi}{\omega_0} \right)^2(\theta_4)^4 , b:= \frac{-1}{3}\left( \frac{\pi}{\omega_0} \right)^2(\theta_3)^4 , c:= \frac{1}{3}\left( \frac{\pi}{\omega_0} \right)^2(\theta_2)^4$$
$e_1:=a-b$ $,e_2:=b-c$ $,e_3:=c-a$
性質
$e_1-e_2=-3b$ $, e_2-e_3=-3c$ $, e_3-e_1=-3a$
$a+b+c=0$
$e_1+e_2+e_3=0$
$u=e_1,e_2,e_3$は$4u^3-g_2u-g_3=0$の根とする.
$a+b+c=0$ とする.
1.$a^2+b^2+c^2=-2(ab+bc+ca)$
2.$(a-b)^2(b-c)^2(c-a)^2=-4(ab+bc+ca)^3-27(abc)^2$
$$\varDelta=g_2^3-27g_3^2=16\left( \frac{\pi}{\omega_0} \right)^{12}(\theta_2\theta_3\theta_4)^8=\left( \frac{2\pi}{\omega_0} \right)^{12}q^2(Q_1)^{24}$$
$u=e_1,e_2,e_3$は$4u^3-g_2u-g_3=0$の根なので,
$$3(ab+bc+ca)=ab+bc+ca-(a^2+b^2+c^2)=\frac{(a-b)^2+(b-c)^2+(c-a)^2}{-2}=\frac{e_1^2+e_2^2+e_3^2}{-2}=e_1e_2+e_2e_3+e_3e_1=\frac{-g_2}{4}$$
$$(a-b)(b-c)(c-a)=e_1e_2e_3=\frac{g_3}{4}$$
$$(-27abc)^2=(e_1-e_2)^2(e_2-e_3)^2(e_3-e_1)^2=-4(e_1e_2+e_2e_3+e_3e_1)^3-27(e_1e_2e_3)^2=-4(\frac{-g_2}{4})^3-27(\frac{g_3}{4})^2=\frac{\varDelta}{16}$$
また$$-27abc=\left( \frac{\pi}{\omega_0} \right)^6(\theta_2\theta_3\theta_4)^4$$
より.
$$\varDelta(\tau)=(2\pi)^{12}q^2(Q_1)^{24}$$
$$\eta(\tau)=q^{\frac{1}{12}}Q_1$$
$$j(\tau)=\frac{(12g_2)^3}{\varDelta}$$
$$\gamma(\tau)=j(\tau)^{\frac{1}{3}}$$
$$f(\tau)=\sqrt{\frac{\theta_3}{\eta(\tau)}} , f_1(\tau)=\sqrt{\frac{\theta_4}{\eta(\tau)}} , f_2(\tau)=\sqrt{\frac{\theta_2}{\eta(\tau)}}$$
$f_1(\tau)^8+f_2(\tau)^8=f(\tau)^8$
$$j(\tau)=\frac{32(\theta_2^8+\theta_3^8+\theta_4^8)^3}{(\theta_2\theta_3\theta_4)^8}$$
$$\frac{a^2+b^2+c^2}{-2}=ab+bc+ca=\frac{-g_2}{12}$$
より
$$\frac{g_2}{6}= \frac{1}{9}\left( \frac{\pi}{\omega_0} \right)^4 \left[ (\theta_2)^8+(\theta_3)^8+(\theta_4)^8 \right]$$
$$(g_2)^3= \frac{8}{27}\left( \frac{\pi}{\omega_0} \right)^{12} \left[ (\theta_2)^8+(\theta_3)^8+(\theta_4)^8 \right]^3$$
ゆえに
$$j(\tau)=12^3\frac{(g_2)^3}{\varDelta}=12^3\frac{8}{27}\frac{1}{16}\frac{(\theta_2^8+\theta_3^8+\theta_4^8)^3}{(\theta_2\theta_3\theta_4)^8}$$
$$\gamma(\tau)=\frac{f(\tau)^{24}-16}{f(\tau)^8}=\frac{f_1(\tau)^{24}+16}{f_1(\tau)^8}=\frac{f_2(\tau)^{24}+16}{f_2(\tau)^8}$$
$x=-f(\tau)^8$ $, y=f_1(\tau)^8$ $, z=f_2(\tau)^8$ とおくと,$x+y+z=0$
$(\theta_2\theta_3\theta_4)^4=16qQ_1^{12}$ より $xyz=-16$
$$\gamma(\tau)^3=\frac{32(\theta_2^8+\theta_3^8+\theta_4^8)^3}{(16\eta(\tau)^{12})^2}=\frac{(\theta_2^8+\theta_3^8+\theta_4^8)^3}{8\eta(\tau)^{24}}=\left( \frac{x^2+y^2+z^2}{2} \right)^3=-(xy+yz+zx)^3$$
解と係数の関係により$x,y,z$は$T^3-\gamma(\tau)T+16=0$の根である.
$T=x,y,z$は$$\gamma(\tau)=\frac{T^3+16}{T}$$を満たす.
$T=-x$は
$$\gamma(\tau)=\frac{T^3-16}{T}$$を満たす.