Compute the value of
\begin{equation} \sqrt{\left(L_{2n}+2\sqrt{\frac{6}{5}}\right)^2 + F_{2n}^2} - \sqrt{\left(L_{2n}-2\sqrt{\frac{6}{5}}\right)^2 + F_{2n}^2} \qquad (n \in \mathbb{N}) \end{equation}
$ \newcommand\f[2]{f_{#1}\left(#2\right)} \newcommand\g[2]{g_{#1}\left(#2\right)} $
Let $a \geq 0$ and $b \geq 0$.
\begin{align}
\f{a,b}{x} &:= \sqrt{(a+x)^2 + b^2} - \sqrt{(a-x)^2 + b^2} \\
\g{a,b}{x} &:= \frac{x}{2}\sqrt{\frac{a^2 + b^2 - x^2/4}{a^2 - x^2/4}} \\
\end{align}
\begin{equation} \forall x\in [0,2a]:\, \f{a,b}{\g{a,b}{x}} = x \end{equation}
Assume $x \in [0,2a]$. Because $\f{a,b}{x} \geq 0$, we may rewrite
\begin{equation} \f{a,b}{\g{a,b}{x}} = \sqrt{\f{a,b}{\g{a,b}{x}}^2} = \sqrt{2}\sqrt{a^2+b^2+\g{a,b}{x}^2 - \sqrt{(a^2+b^2+\g{a,b}{x}^2)^2 - 4a^2\g{a,b}{x}^2}} \end{equation}
\begin{equation} \g{a,b}{x}^2 = \frac{{\left(4 \, a^{2} + 4 \, b^{2} - x^{2}\right)} x^{2}}{4 \, {\left(2 \, a + x\right)} {\left(2 \, a - x\right)}} \end{equation}
\begin{equation} a^2 + b^2 + \g{a,b}{x}^2 = \frac{16 \, a^{4} + 16 \, a^{2} b^{2} - x^{4}}{4 \, {\left(2 \, a + x\right)} {\left(2 \, a - x\right)}} \end{equation}
\begin{equation} \sqrt{\left(a^2 + b^2 + \g{a,b}{x}^2\right)^2 - 4a^2\g{a,b}{x}^2} = \frac{{16 \, a^{4} + 16 \, a^{2} b^{2} - 8 \, a^{2} x^{2} + x^{4}}}{4 \, {\left(2 \, a + x\right)} {\left(2 \, a - x\right)}} \end{equation}
Plugging in these values into the above expression for $\f{a,b}{\g{a,b}{x}}$ yields
\begin{equation} \f{a,b}{\g{a,b}{x}} = \sqrt{2}\sqrt{\frac{8a^2x^2-2x^4}{4 \, {\left(2 \, a + x\right)} {\left(2 \, a - x\right)}}} = x \end{equation}
\begin{equation} L_{2n}^2 = 5F_{2n}^2 + 4 \end{equation}
We can use Binet-type expressions for Lucas and Fibonacci numbers:
\begin{align}
5F_{2n}^2 + 4
&= 5\left( \frac{\phi^{2n} - \phi^{-2n}}{\sqrt{5}} \right)^2 + 4\\
&= \phi^{4n} - 2 + \phi^{-4n} + 4 \\
&= \phi^{4n} + 2 + \phi^{-4n} \\
&= \left( \phi^{2n} + \phi^{-2n} \right)^2 \\
&= L_{2n}^2
\end{align}
Alternatively we can also compute in the $\mathbb{Q}$-algebra $\mathbb{Q}[\frac{1}{2},\frac{\sqrt{5}}{2}]$, as in
a previous tweet by @Numerus_A
:
\begin{align}
1
&= \phi^{-2n}\phi^{2n} \\
&= \frac{L_{2n} - F_{2n}\sqrt{5}}{2} \frac{L_{2n} + F_{2n}\sqrt{5}}{2} \\
&= \frac{L_{2n}^2 - 5F_{2n}^2}{4}
\end{align}
\begin{equation} \g{L_{2n},F_{2n}}{4} = \frac{4}{2}\sqrt{\frac{L_{2n}^2 + F_{2n}^2 - 4^2/4}{L_{2n}^2 - 4^2/4}} = \frac{4}{2}\sqrt{\frac{6F_{2n}^2}{5F_{2n}^2}} = 2\sqrt{\frac{6}{5}} \end{equation}
そうして
\begin{equation}
4
= \f{L_{2n},F_{2n}}{ \g{L_{2n},F_{2n}}{ 4 } }
= \f{L_{2n},F_{2n}}{2\sqrt{\frac{6}{5}}}
= \sqrt{\left(L_{2n}+2\sqrt{\frac{6}{5}}\right)^2 + F_{2n}^2} - \sqrt{\left(L_{2n}-2\sqrt{\frac{6}{5}}\right)^2 + F_{2n}^2}
\end{equation}