Compute the value of
(L2n+265)2+F2n2−(L2n−265)2+F2n2(n∈N)
Original Tweet
Let a≥0 and b≥0.fa,b(x):=(a+x)2+b2−(a−x)2+b2ga,b(x):=x2a2+b2−x2/4a2−x2/4
∀x∈[0,2a]:fa,b(ga,b(x))=x
Assume x∈[0,2a]. Because fa,b(x)≥0, we may rewrite
fa,b(ga,b(x))=fa,b(ga,b(x))2=2a2+b2+ga,b(x)2−(a2+b2+ga,b(x)2)2−4a2ga,b(x)2
ga,b(x)2=(4a2+4b2−x2)x24(2a+x)(2a−x)
a2+b2+ga,b(x)2=16a4+16a2b2−x44(2a+x)(2a−x)
(a2+b2+ga,b(x)2)2−4a2ga,b(x)2=16a4+16a2b2−8a2x2+x44(2a+x)(2a−x)
Plugging in these values into the above expression for fa,b(ga,b(x)) yields
fa,b(ga,b(x))=28a2x2−2x44(2a+x)(2a−x)=x
L2n2=5F2n2+4
We can use Binet-type expressions for Lucas and Fibonacci numbers:5F2n2+4=5(ϕ2n−ϕ−2n5)2+4=ϕ4n−2+ϕ−4n+4=ϕ4n+2+ϕ−4n=(ϕ2n+ϕ−2n)2=L2n2Alternatively we can also compute in the Q-algebra Q[12,52], as in a previous tweet by @Numerus_A :1=ϕ−2nϕ2n=L2n−F2n52L2n+F2n52=L2n2−5F2n24
gL2n,F2n(4)=42L2n2+F2n2−42/4L2n2−42/4=426F2n25F2n2=265
そうして4=fL2n,F2n(gL2n,F2n(4))=fL2n,F2n(265)=(L2n+265)2+F2n2−(L2n−265)2+F2n2
バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。