logの積分といったら厄介なイメージがあると思います。logはすごく積分しにくい関数で、ただのlogxの積分ですら部分積分が必要となりますよね。
そんなlogの積分は面倒なのでlogxくらいは暗記している方も多いかと思いますが、今回は、それを更に(logx)^nとして一般化していきたいと思います。
なお、この記事では不定積分の結果の積分定数Cは省略します。
まずはlogxの積分をしっかり一から確認しましょう。今回は部分積分を用いた方法にします。
少し丁寧すぎるかもしれませんが、どうせ後で一般化するので、これくらいでもいいですかね。これをそっくりそのままn乗に応用したいと思います。
一旦ここで整理すると、以下の等式が出てきましたね。
ここで
となり、これを元の式に代入すると
ここでまた
を代入すると、
ここまで来ると最早一般化できましたね。同様の作業を繰り返していけばよいだけです。シグマを使って式に表すと以下のようになります。
文字に起こすと難しそうかもしれませんが、感覚的にはすごく覚えやすい公式だと思います。僕自身、数検を受ける際は、この公式はすごいリズミカルなので、なんとなく覚えてしまいました。
この記事を書くのは、細かい符号等、入力がすごく大変でした…。なにか符号ミス等あれば、ぜひコメント等で教えていただきたいです。最後まで見ていただきありがとうございました。
今回の公式は、覚えていると楽!というほどのものでもないかもしれませんが、