3

Fibonacci, Lucas, Chebyshev

35
0


In this short article I want to point out some striking similarities between Fibonacci numbers, Lucas numbers, and Chebyshev polynomials of second and first kind.

First let me give some basic definitions, which differ slightly from the standard ones, for reasons which will be apparent later:

Definitions

The Fibonacci numbers Fn and the Lucas numbers Fn can be defined as traces.
Consider first the matrix Φ and its characteristic polynomial χΦ(t):

Φ=(0111)χΦ(t)=t2t1

Then

Ln=Tr(Φn)Fn=Tr(ΦnχΦ(Φ))

for nZ.

Similarly Chebyshev polynomials of the second kind Чn and of the first kind Шn can be defined by
considering the matrix Ψ and its characteristic polynomial χΨ(t):

Φ=(0112x)χΦ(t)=t22xt+1

Then

Шn=Tr(Ψn)Чn=Tr(ΨnχΨ(Ψ))

for nZ.

Note that with the usual definitions the Chebyshev polynomials (let's denote them Tn and Un) are related to those above as follows:

2Tn=ШnUn1=Чn

An assortment of correspondences

Below I listed some similar identities I found (without proof).
Feel free to find even more connections!



Chebyshev WorldFibonacci World

Чn+2=2xЧn+1Чn

Fn+2=Fn+1+Fn

Шn+2=2xШn+1Шn

Ln+2=Ln+1+Ln

Чn2+Чn+Чn+2=Ч3Чn

Fn2+Fn+Fn+2=L3Fn

Чn1+Чn+1=Ч2Чn

Fn1+Fn+1=F2Ln

Чn+1Чn1=Шn

Fn+1+Fn1=Ln

Чn+12Чn12=Ч2Ч2n

Fn+12Fn12=F2F2n

gcd(Чa,Чb)=Чgcd(a,b)

gcd(Fa,Fb)=Fgcd(a,b)

With
α=agcd(a,b),
β=bgcd(a,b),
γ=gcd(a,b) positive integers:

lcm(Чa,Чb)={k=rrЧγ(β+2k) if α=2r+1k=0r1Чγ(β12k)+Чγ(β+1+2k) if α=2r

lcm(Fa,Fb)={k=rrFγ(β+2k) if α=2r+1k=0r1Fγ(β12k)+Fγ(β+1+2k) if α=2r

(nk)Ч:={ЧnЧnk+1ЧkЧ1 if 0kn0 otherwise

(nk)F:={FnFnk+1FkF1 if 0kn0 otherwise

(nk)Ч=Чk+1(n1k)ЧЧnk1(n1k1)Ч

(nk)F=Fk+1(n1k)F+Fnk1(n1k1)F

Ψn=(Чn1ЧnЧnЧn+1)

Φn=(Fn1FnFnFn+1)

Чn2Чn1Чn+1=1

Fn1Fn+1Fn2=(1)n




References

投稿日:2021228
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。
バッチを贈って投稿者を応援しよう

バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。

投稿者

私のことは気にしないでください。🙇‍♂️

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中
  1. Definitions
  2. An assortment of correspondences
  3. References