ãåç¥ã®æ¹ãã»ãšãã©ããšæãããŸãããããã³ã®å ¬åŒã£ãŠããã®ã¯
$$\frac\pi4=4\arctan\frac15-\arctan\frac1{239}$$
ããŒããŒã®ã§ããããã®å³èŸºãã°ã¬ãŽãªãŒçŽæ°ãšããã次ã®åŒ
$$\arctan x=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{2n+1}}x^{2n+1}=x-{\frac {1}{3}}x^{3}+{\frac {1}{5}}x^{5}-{\frac {1}{7}}x^{7}+-\cdots\quad(\vert x\vert \lt1)$$
ã§èšç®ããŠããããšããªãããã£ã¡ãéãåæããŠãããããããååšçãæ±ããã®ã«é©ããŠãããã ãšãã
ãã®ããã³ã®å ¬åŒã«é¡äŒŒããåŒã¯ããããçºèŠãããŠããŠããããã $\displaystyle\frac{\pi}4=\sum_{k=1}^na_k\arctan\frac1{b_k}$ ãšãã圢ãããŠããã®ãç¹åŸŽã§ããåŒæ°ã®ååã$1$ãªã®ã¯æããã°ã¬ãŽãªãŒçŽæ°ã«ãããšãå°ãã§ãèšç®ãã©ã¯ã«ããããããšæãããŸãã
ãšããã§å æ¥ãååšçã®æ¥ã«$\xcancel{\arctan}$çã¿ã³ãé£ã¹ã«è¡ã£ããã§ããïŒåçªïŒãã§ãã¿ã³ã ãã«$\tan\tan$ ãšé£ã¹ãŠ$\tan$ã§ããã©(â)ããã®ãšããµãš
$$\textcolor{#f07}{\frac\pi2=5\arctan\frac13-\arctan\frac1{26}+\arctan\frac1{2057}}$$
ã£ãŠåŒãæãã€ãã¡ãããŸãããæ£ç¢ºã«ã¯ããã³ç³»ã®å ¬åŒã«ãŠå šãŠã®åŒæ°ã®ååã $1$ ã«ãããéæ£æ¥é¢æ°ã®å解å®çããšããŒã¢ã€ãã¢ãæãã€ããŠãããé©çšããŠã¿ããããªãã§ããããªããªãé¢çœãã£ãã®ã§çŽ¹ä»ããŠã¿ãããšæããŸãã(â©ÂŽâïœ)â©
ãŸãã¯ãããŒã¹ãšãªãã€ã¡ãŒãžãã(*ÂŽâïœ*)b
ã€ã¡ãŒãžå³
$$\begin{align} \mathrm{Arg}~Z_\theta=&\mathrm{Arg}{Z^N}-\mathrm{Arg}{Z^N}+\mathrm{Arg}{Z_\theta}\\ \downarrow&\\ Z_\theta=&Z^N\times\frac{Z_\theta}{Z^N}\\ \downarrow&\\ (\mathrm{Re}~Z_\theta+i~\mathrm{Im}~Z_\theta)=&(\mathrm{Re}~Z+i~\mathrm{Im}~Z)^N\times\frac{\mathrm{Re}~Z_\theta+i~\mathrm{Im}~Z_\theta}{\mathrm{Re}~Z^N+i~\mathrm{Im}~Z^N}\\ =&(\mathrm{Re}~Z+i~\mathrm{Im}~Z)^N\times\frac{\mathrm{Re}~Z^N-i~\mathrm{Im}~Z^N}{\mathrm{Re}~Z^N-i~\mathrm{Im}~Z^N}\cdot\frac{\mathrm{Re}~Z_\theta+i~\mathrm{Im}~Z_\theta}{\mathrm{Re}~Z^N+i~\mathrm{Im}~Z^N}\\ =&(\mathrm{Re}~Z+i~\mathrm{Im}~Z)^N\times\frac{[(\mathrm{Re}~Z^N)(\mathrm{Re}~Z_\theta)+(\mathrm{Im}~Z^N)(\mathrm{Im}~Z_\theta)]+i[(\mathrm{Re}~Z^N)(\mathrm{Im}~Z_\theta)-(\mathrm{Im}~Z^N)(\mathrm{Re}~Z_\theta)]}{(\mathrm{Re}~Z^N)^2+(\mathrm{Im}~Z^N)^2}\\ \downarrow&\\ \arctan\frac{\mathrm{Im}~Z_\theta}{\mathrm{Re}~Z_\theta}=&N\mathrm{\arctan}\frac{\mathrm{Im}~Z}{\mathrm{Re}~Z}+\arctan\frac{(\mathrm{Re}~Z^N)(\mathrm{Im}~Z_\theta)-(\mathrm{Im}~Z^N)(\mathrm{Re}~Z_\theta)}{(\mathrm{Re}~Z^N)(\mathrm{Re}~Z_\theta)+(\mathrm{Im}~Z^N)(\mathrm{Im}~Z_\theta)}\\ \theta=&N\mathrm{\arctan}\frac{\mathrm{Im}~Z}{\mathrm{Re}~Z}+\arctan\frac{\mathrm{Re}~Z^N\cdotp\sin\theta-\mathrm{Im}~Z^N\cdotp\cos\theta}{\mathrm{Re}~Z^N\cdotp\cos\theta+\mathrm{Im}~Z^N\cdotp\sin\theta} \end{align}$$
ããã§ã第äžé ç®ã®ååã $1$ ã«ãããã®ã§ã$\mathrm{Im}~Z=1$ ãšããã°
$$\begin{cases} \frac\pi4=N\mathrm{\arctan}\frac{1}{\mathrm{Re}~Z}+\arctan\frac{\mathrm{Re}~Z^N-\mathrm{Im}~Z^N}{\mathrm{Re}~Z^N+\mathrm{Im}~Z^N}\\ \frac\pi2=N\mathrm{\arctan}\frac{1}{\mathrm{Re}~Z}+\arctan\frac{\mathrm{Re}~Z^N}{\mathrm{Im}~Z^N}\\ \pi=N\mathrm{\arctan}\frac{1}{\mathrm{Re}~Z}-\arctan\frac{\mathrm{Im}~Z^N}{\mathrm{Re}~Z^N} \end{cases}$$
ãšãªããŸãã$\mathrm{Im}~Z^N\ne(\mathrm{Im}~Z)^N=1$ ã£ãŠããšã«æ³šæããŠãã
ãã¡ããããã®æç¹ã§ã¯äºé
ç®ã®ååã $1$ ã«ãªã£ãŠãããä¿èšŒã¯ãããŸããã
ããã§ç»å Žããã®ãéæ£æ¥é¢æ°ã®å解å®çãçšãããã¿ãåŒåæ°å解ïŒçtanå解ïŒãã§ãïŒïŒ
éæ£æ¥é¢æ°ã®å解å®çãby ã¿ãð¹àž ^â¢Ïâ¢^àž |
---|
éæ£æ¥é¢æ°($\arctan$)ã®åŒæ°ãæçæ°ã®ãšãããã®é¢æ°ã®å€ã¯ ååãïŒãšããæçåæ°ãåŒæ°ã«æã€éæ£æ¥é¢æ°ã®åã§è¡šããã $\displaystyle\arctan\frac{q}{pq\pm r}=\arctan\frac1p\mp\arctan\frac{r}{(pq\pm r)p+q}$ $\displaystyle\arctan\frac1p=\arctan\frac{q}{pq\pm r}\pm\arctan\frac{r}{(pq\pm r)p+q}$ (â»è€å·åé ) |
蚌æã«ã€ããŠã¯ $(p+i)(p-i)(pq\pm r+qi)=(p+i)[(pq\pm r)p+q\mp ri]$ ãšç¬æ®ºãããŠããã ããšããŠãããã§æ³šç®ãã¹ãã¯$\text{åæ¯}\equiv\pm r\pmod{\text{åå}}$ ãåŸããšããã
ã€ãŸãã$q\gt r$ ãšãªããã㪠$r$ ããšãããšã¯ç¢ºå®ã«å¯èœã§ããããåãæäœãååž°çã«ç¹°ãè¿ãããšã§ãããã¯å šãŠã®åŒæ°ã®ååã $1$ ã«ã§ããã£ãŠããã§ããããªãã ãšãžããåŒåæ° ã¿ãããªå解æ¹æ³ã§ãããã¿ãåŒåæ°å解ã§ã¯ãããéæ£æ¥é¢æ°$\arctan$ã®åŒæ°ã§ãã£ãŠããŸããŸã(*ÂŽèžïœ*)
ããã䜿ãã°ããããã§ãããã³ç³»ã®å ¬åŒãéç£ã§ãããã§ãããäŸãã°åé ã $5\arctan\frac16$ ãšããŠã¿ãŸããããã$(6+i)^5=5646+6121i$ ã§ããã $5\arctan\frac16=\arctan\frac{6121}{5646}$ãååãåæ¯ãããã倧ããããšãã $45^\circ$ ããªãã¡ $\frac\pi4~\mathrm{rad}$ ãããã倧ããããšãåãããŸãããã®å·®ãã©ã®ãããããšãããš
$$\begin{align} (5646+6121i)\times\overbrace{(1-i)}^{\mathrm{Arg}(1-i)=-\frac\pi4}=&11767+475i\\ \downarrow&\\ \arctan\frac{6121}{5646}\underbrace{-\arctan\frac11}_{-\frac\pi4}=&\arctan\frac{475}{11767} \end{align}$$
ããããåããã°ãããšã¯ã²ãããå解ããŠããã ãïŒ
$$\begin{align}
\frac\pi4
=&5\arctan\frac16-\arctan\frac{475}{11767}\\
=&5\arctan\frac16-\arctan\frac1{25}-\arctan\frac{54}{147325}\\
=&5\arctan\frac16-\arctan\frac1{25}-\arctan\frac1{2728}+\arctan\frac{13}{401902654}\\
=&5\arctan\frac16-\arctan\frac1{25}-\arctan\frac1{2728}+\arctan\frac1{30915588}-\arctan\frac2{2485011373434113}\\
=&5\arctan\frac16-\arctan\frac1{25}-\arctan\frac1{2728}+\arctan\frac1{30915588}-\arctan\frac1{1242505686717056}+\arctan\frac1{3087640763048447064255689331330}\\
\end{align}$$
Wolfram Alpha å
çã«ããçãåãã
ãªããšãã¢ã¡ãŒãžã³ã°ã§ããïŒæ±ãèšç®çµæã¯ãã£ãŠããã§ãããé ã®æ°ãæ¡ã®æ°ãå°åžžãããªã((((ïŒïŸÐïŸ))))
ãããããå°ãã³ã³ãã¯ãã«ããæ¹æ³ã«ã€ããŠãäžå¿ã¢ã€ãã¢ã¯ããã®ã§ãããçŸç¶ã§ã¯ãŸã æçšæ§ã«ä¹ããããã¡ãããšçŽ¹ä»ã§ããããªæ¹æ³ãèŠã€ãããŸãããç¶ç·šãæžããããšæããŸã(>ï¹<)ïŸïœŒ
å 容ã«ã€ããŠæ€èšŒãã ãã£ã nayuta_ito å çã å士(ç¬)ã®ãã å çã YouTakaoka å ç ã«æè¬æè¬ã§ãâ¡