$$$$
\begin{align*}
\int_0^{\frac12} \frac{x\arcsin x}{\sqrt{1-x^2}} dx~=~?
\end{align*}
解説
\begin{align*}
\int_0^{\frac12} \frac{x\arcsin x}{\sqrt{1-x^2}} dx &= \int_0^{\frac{\pi}{6}} t \sin t dt &(x=\sin t)\\
&=\Biggr[ -t\cos t \Biggl]_0^{\frac{\pi}{6}} + \int_0^{\frac{\pi}{6}} \cos t dt \\
&= -\frac{\pi \sqrt{3}}{12} + \Biggr[\sin t \Biggl]_0^{\frac{\pi}{6}} \\
&=\frac12 - \frac{\pi \sqrt{3}}{12}
\end{align*}
また,置換せずに部分積分で解くことも出来る.