証明
\begin{align*}
\lim_{x\to 0} \Gamma(ax) \sin \pi bx &= \lim_{x\to 0} \Gamma(x)\sin \pi \frac{b}{a} x \\
&=\lim_{x\to 0} x\Gamma(x) \frac{\sin\pi \frac{b}{a} x}{x}\\
&=\lim_{x\to 0}\Gamma(x+1)\frac{\sin\pi \frac{b}{a} x}{x}\\
&=\pi\frac{b}{a}\lim_{x\to 0}\Gamma(x+1)\frac{\sin x}{x}\\
&=\frac{b}{a}\pi
\end{align*}