曲線$C$: $y=\dfrac{1}{x}$ ($x>0$) とする。原点、曲線$C$上、$x$軸上に3点があるように正三角形$T_1$をとる。$n=1,2,\dots$ について図のように、$x$軸上に一辺があり、曲線$C$上に一点をもち、正三角形$T_n$に右から一点を共有するように正三角形$T_{n+1}$を定める。$T_n$の曲線$C$上にある点の$x$座標を$t_n$とする。
(1) $t_1$を求めよ。
(2) $a_n=t_n+\dfrac{1}{\sqrt{3}t_n}$とするとき、$a_n$を$n$で表せ。
(3) $t_n$を求めよ。
(4) 正三角形$T_n$の面積を$S_n$とするとき、$\disp \lim_{N\to\infty}\sum_{n=1}^N S_n$ は収束するか発散するか。収束するならその値を求め、発散するならそれを示せ。
Twitterに投稿した自作問題です。