0

Chapter 5 Number Theory

71
0

** Discrete Mathematics **

CHAPTER 5

Let a,n be positive integers with a,n2. Show that for an1 to be prime, we need a=2 and n to be prime.

Let p be an odd prime and let q=p12. Use Wilson' s Theorem to prove that
(q!)2+(1)q0modp

Prove that: k|nd(k)3=(k|nd(k))2.

Prove that d(n) is odd if and only if n is a square.

Show that ϕ(d)|ϕ(n) whenever d|n.

Find the power of 5 in the prime factorization of 2015!

Solution

Solution of 1 :

Since an1=(a1)(an1+an2++a+1) and a1>1 if a>2, it follows that an1 can only be prime if a=2. Consider 2n1. If n=kl with k,l2, then
2n1=2kl1=(2k1)(2k(l1)++2k+1)-is composite.
So for 2n1 to be prime, we need n to be prime.

Solution of :

(p1)!=12q(q+1)(p1)=q!(p1)(p2)(q+1)q!(1)(2)(q)modp=(1)q(q!)2.
But by Wilson' s Theorem, (p1)!1modp. Hence (q!)2(1)q(p1)!(1)1modp;

i.e. (q!)2+(1)q0modp.

Solution of :

By multiplicativity, the result folllows if we can show that for p prime and km0 (integers) we have ϕ(pm)|ϕ(pk). For m=0 this is immediate, while for m1,
ϕ(pk)ϕ(pm)=pk(11p)pm(11p)=pkm , a positive integer.

Solution of 6:

Writing 2015!=2a3b5c, we have
c=k1[20155k]=[20155]+[201525]+[2015125]+[2015625]=403+80+16+3=502

投稿日:202151
OptHub AI Competition

この記事を高評価した人

高評価したユーザはいません

この記事に送られたバッジ

バッジはありません。
バッチを贈って投稿者を応援しよう

バッチを贈ると投稿者に現金やAmazonのギフトカードが還元されます。

投稿者

Math-X
Math-X
12
598
Math website math-x.linkpc.net

コメント

他の人のコメント

コメントはありません。
読み込み中...
読み込み中
  1. ** Discrete Mathematics **
  2. CHAPTER 5
  3. Solution