先日、マクドナルドさんで「ミルキーのままの味」という期間限定イベをやっているのをおみかけまして、光の速さでレジカウンターの行列に並んできたのですが、
想像以上にミルキーそのまんまでした!! 6月上旬位までとのことですので、練乳大好き「れんにゃ~」を自称される方はお早めに足を運ぶことをオススメします(*´ω`*)♪♪
さてさて、そんな甘々スイーツを堪能していたところ、ふと数学を使った小ネタのアイデアが降ってきました。一言でいうなら「 間違った計算で成立する等式選手権 」にエントリーできそうな 数式マジック です。
百聞は一見に如かず、まずはコチラの ミルキー 計算をご覧くださいませ。
$$\sqrt[3]{\textcolor{#f7c}{\pm}\sqrt5\textcolor{#07f}{\pm}2}=
\sqrt[3]{\textcolor{#f7c}{\pm}\textcolor{#f7c}{1}\sqrt{\textcolor{#f00}{5}}\textcolor{#07f}{\pm}\textcolor{#07f}{2}\sqrt{\textcolor{#00f}{1}}}=(\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{5}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{1}})\sqrt[3]{\frac{(\textcolor{#07f}{2}-\textcolor{#f7c}{1})}{2(\textcolor{#f00}{5}-\textcolor{#00f}{1})}}=\frac{\textcolor{#f7c}{\pm}\sqrt{5}\textcolor{#07f}{\pm}1}{2}$$
$$\sqrt[3]{\textcolor{#f7c}{\pm}2\sqrt{13}\textcolor{#07f}{\pm}5}=
\sqrt[3]{\textcolor{#f7c}{\pm}\textcolor{#f7c}{2}\sqrt{\textcolor{#f00}{13}}\textcolor{#07f}{\pm}\textcolor{#07f}{5}\sqrt{\textcolor{#00f}{1}}}=(\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{13}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{1}})\sqrt[3]{\frac{(\textcolor{#07f}{5}-\textcolor{#f7c}{2})}{2(\textcolor{#f00}{13}-\textcolor{#00f}{1})}}=\frac{\textcolor{#f7c}{\pm}\sqrt{13}\textcolor{#07f}{\pm}1}{2}$$
$$\sqrt[3]{\textcolor{#f7c}{\pm}5\sqrt{2}\textcolor{#07f}{\pm}7}=
\sqrt[3]{\textcolor{#f7c}{\pm}\textcolor{#f7c}{5}\sqrt{\textcolor{#f00}{2}}\textcolor{#07f}{\pm}\textcolor{#07f}{7}\sqrt{\textcolor{#00f}{1}}}=(\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{2}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{1}})\sqrt[3]{\frac{(\textcolor{#07f}{7}-\textcolor{#f7c}{5})}{2(\textcolor{#f00}{2}-\textcolor{#00f}{1})}}=\textcolor{#f7c}{\pm}\sqrt{2}\textcolor{#07f}{\pm}1$$
$$\sqrt[3]{\textcolor{#f7c}{\pm}6\sqrt{3}\textcolor{#07f}{\pm}10}=
\sqrt[3]{\textcolor{#f7c}{\pm}\textcolor{#f7c}{6}\sqrt{\textcolor{#f00}{3}}\textcolor{#07f}{\pm}\textcolor{#07f}{10}\sqrt{\textcolor{#00f}{1}}}=(\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{3}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{1}})\sqrt[3]{\frac{(\textcolor{#07f}{10}-\textcolor{#f7c}{6})}{2(\textcolor{#f00}{3}-\textcolor{#00f}{1})}}=\textcolor{#f7c}{\pm}\sqrt{3}\textcolor{#07f}{\pm}1$$
一見すると公式にあてはめて解いたかのようにも見えますが、果たしてこれは数学的に正しいでしょうか? 検算してみる限り、一応これらはすべて等式として成立しているようです。
しかし、残念ながら他の問題に適用してみても、必ずしもうまくいくとは限りません(;´Д`)
$$\sqrt[3]{\textcolor{#f7c}{\pm}15\sqrt{3}\textcolor{#07f}{\pm}26}=
\sqrt[3]{\textcolor{#f7c}{\pm}\textcolor{#f7c}{15}\sqrt{\textcolor{#f00}{3}}\textcolor{#07f}{\pm}\textcolor{#07f}{26}\sqrt{\textcolor{#00f}{1}}}~\ne~(\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{3}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{1}})\sqrt[3]{\frac{(\textcolor{#07f}{26}-\textcolor{#f7c}{15})}{2(\textcolor{#f00}{3}-\textcolor{#00f}{1})}}=(\textcolor{#f7c}{\pm}\sqrt{3}\textcolor{#07f}{\pm}1)\sqrt[3]{\frac{11}{4}}$$
$\cdots$と思いきや、次のように魔法をかけてあけてあげると途端に成立するようになります$\cdots$!?
$$\sqrt[3]{\textcolor{#f7c}{\pm}15\sqrt{3}\textcolor{#07f}{\pm}26}= \sqrt[3]{\textcolor{#f7c}{\pm}\textcolor{#f7c}{15}\sqrt{\textcolor{#f00}{3}}\textcolor{#07f}{\pm}\textcolor{#07f}{13}\sqrt{\textcolor{#00f}{4}}}=(\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{3}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{4}})\sqrt[3]{\frac{(\textcolor{#07f}{13}-\textcolor{#f7c}{15})}{2(\textcolor{#f00}{3}-\textcolor{#00f}{4})}}=\textcolor{#f7c}{\pm}\sqrt{3}\textcolor{#07f}{\pm}2$$
というわけで、今回思いついたのはこのような三乗根を用いた小学生の夢的トリックです。正しくないはずの計算で正しい答えを導く というお遊びに潜む数理パズル、さっそくそのカラクリを紹介いたしましょう(*´艸`*)
※手っ取り早くやり方だけ知りたい方は、次のセクションは読み飛ばしておっけーですよ!
$\alpha,~\beta,~q=\sqrt[3]{\alpha-\beta}$ が有理数ならば $\displaystyle\sqrt[3]{\textcolor{#f7c}{\pm}\sqrt{\alpha}\textcolor{#07f}{\pm}\sqrt{\beta}}$ の二重根号を外すことができます。 $$\quad\rightarrow\begin{cases}\begin{align} \{\textcolor{#f00}{p},~\textcolor{#00f}{r},~\textcolor{#07f}{s},~\textcolor{#f7c}{t}\}~&\in~\mathbb{Q}\\ \textcolor{#f00}{p}\quad&=\textcolor{#f00}{(q+r)}\\ \textcolor{#07f}{s}\quad&=3\textcolor{#f00}{p}+\textcolor{#00f}r=3\textcolor{#f00}{(q+r)}+\textcolor{#00f}r=\textcolor{#07f}{(3q+4r)}\\ \textcolor{#f7c}{t}\quad&=\textcolor{#f00}{p}+3\textcolor{#00f}r=\textcolor{#f00}{(q+r)}+3\textcolor{#00f}r=\textcolor{#f7c}{(q+4r)}\\ \alpha\quad&=\textcolor{#f7c}{t}^2\textcolor{#f00}{p}=\textcolor{#f7c}{(q+4r)}^2\textcolor{#f00}{(q+r)}\\ \beta\quad&=\textcolor{#07f}{s}^2\textcolor{#00f}{r}=\textcolor{#07f}{(3q+4r)}^2\textcolor{#00f}{r}\\ \sqrt[3]{\alpha-\beta}~&\displaystyle=\sqrt[3]{\textcolor{#f7c}{t}^2\textcolor{#f00}{p}-\textcolor{#07f}{s}^2\textcolor{#00f}{r}}\\ &=\sqrt[3]{\textcolor{#f7c}{(q+4r)}^2\textcolor{#f00}{(q+r)}-\textcolor{#07f}{(3q+4r)}^2\textcolor{#00f}{r}}\\ &=\sqrt[3]{q^3}=q\\ \left(\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{p}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{r}}\right)^3&=\left(\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{q+r}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{r}}\right)^3\\ &=\textcolor{#f7c}{\pm}\textcolor{#f7c}{(q+4r)}\sqrt{\textcolor{#f00}{q+r}}\textcolor{#07f}{\pm}\textcolor{#07f}{(3q+4r)}\sqrt{\textcolor{#00f}{r}}\\ &=\textcolor{#f7c}{\pm}\textcolor{#f7c}{t}\sqrt{\textcolor{#f00}{p}}\textcolor{#07f}{\pm}\textcolor{#07f}{s}\sqrt{\textcolor{#00f}{r}}\\ \sqrt[3]{\textcolor{#f7c}{\pm}\sqrt{\alpha}\textcolor{#07f}{\pm}\sqrt{\beta}}&=\sqrt[3]{\textcolor{#f7c}{\pm}\textcolor{#f7c}{t}\sqrt{\textcolor{#f00}{p}}\textcolor{#07f}{\pm}\textcolor{#07f}{s}\sqrt{\textcolor{#00f}{r}}}=\sqrt[3]{\textcolor{#f7c}{\pm}\textcolor{#f7c}{(q+4r)}\sqrt{\textcolor{#f00}{q+r}}\textcolor{#07f}{\pm}\textcolor{#07f}{(3q+4r)}\sqrt{\textcolor{#00f}{r}}}\\ &=\displaystyle\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{p}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{r}}=\displaystyle\sqrt[3]{\left(\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{q+r}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{r}}\right)^3} \end{align}\end{cases}$$ |
三乗根の二重根号を外せる条件 |
---|
ここで、
$\begin{cases}\begin{align} \frac{\textcolor{#07f}{s}}{3\textcolor{#f00}{p}+\textcolor{#00f}{r}}\quad\quad&=\frac{\textcolor{#07f}{3q+4r}}{3\textcolor{#f00}{(q+r)}+\textcolor{#00f}{r}}=\frac{\textcolor{#07f}{3q+4r}}{\textcolor{#07f}{3q+4r}}=1\\ \frac{\textcolor{#f7c}{t}}{\textcolor{#f00}{p}+3\textcolor{#00f}{r}}\quad\quad&=\frac{\textcolor{#f7c}{q+4r}}{\textcolor{#f00}{(q+r)}+3\textcolor{#00f}{r}}=\frac{\textcolor{#f7c}{q+4r}}{\textcolor{#f7c}{q+4r}}=1\\ \frac{\textcolor{#07f}{s}-\textcolor{#f7c}{t}}{(3\textcolor{#f00}{p}+\textcolor{#00f}{r})-(\textcolor{#f00}{p}+3\textcolor{#00f}{r})}&=\frac{\textcolor{#07f}{s}-\textcolor{#f7c}{t}}{2(\textcolor{#f00}{p}-\textcolor{#00f}{r})}=\frac{\textcolor{#07f}{(3q+4r)}-\textcolor{#f7c}{(q+4r)}}{2[\textcolor{#f00}{(q+r)}-\textcolor{#00f}{r}]}=\frac{2q}{2q}=1 \end{align}\end{cases}$
という関係性に注目し、次のようなギミックを準備しておきます。
$\begin{cases}\begin{align} n~&\in~\mathbb{Q}\\ \textcolor{#f00}{P}&=n^2\textcolor{#f00}{p}=n^2\textcolor{#f00}{(q+r)}\\ \textcolor{#00f}{R}&=n^2\textcolor{#00f}{r}\\ \textcolor{#07f}{S}&=\frac{\textcolor{#07f}{s}}n=\frac{\textcolor{#07f}{3q+4r}}n\\ \textcolor{#f7c}{T}&=\frac{\textcolor{#f7c}{t}}n=\frac{\textcolor{#f7c}{(q+4r)}}n\\ \textcolor{#f7c}{T}^2\textcolor{#f00}{P}&=\left[\frac{\textcolor{#f7c}{(q+4r)}}n\right]^2\left[n^2\textcolor{#f00}{(q+r)}\right]=\alpha\\ \textcolor{#07f}{S}^2\textcolor{#00f}{R}&=\left[\frac{\textcolor{#07f}{3q+4r}}n\right]^2\left[n^2\textcolor{#00f}{r}\right]=\beta\\ \end{align}\end{cases}$
$\begin{cases}\begin{align} \sqrt[3]{\frac{\textcolor{#07f}{S}}{3\textcolor{#f00}{P}+\textcolor{#00f}{R}}}\quad\quad&=\sqrt[3]{\frac{\frac{\textcolor{#07f}{s}}n}{3n^2\textcolor{#f00}{p}+n^2\textcolor{#00f}{r}}}=\sqrt[3]{\frac{\frac{\textcolor{#07f}{3q+4r}}n}{3n^2\textcolor{#f00}{(q+r)}+n^2\textcolor{#00f}{r}}}=\sqrt[3]{\frac1{n^3}}=\frac1n\\ \sqrt[3]{\frac{\textcolor{#f7c}{T}}{\textcolor{#f00}{P}+3\textcolor{#00f}{R}}}\quad\quad&=\sqrt[3]{\frac{\frac{\textcolor{#f7c}{t}}n}{n^2\textcolor{#f00}{p}+3n^2\textcolor{#00f}{r}}}=\sqrt[3]{\frac{\frac{\textcolor{#f7c}{q+4r}}n}{n^2\textcolor{#f00}{(q+r)}+3n^2\textcolor{#00f}{r}}}=\sqrt[3]{\frac1{n^3}}=\frac1n\\ \sqrt[3]{\frac{\textcolor{#07f}{S}-\textcolor{#f7c}{T}}{(3\textcolor{#f00}{P}+\textcolor{#00f}{R})-(\textcolor{#f00}{P}+3\textcolor{#00f}{R})}}&=\sqrt[3]{\frac{\textcolor{#07f}{S}-\textcolor{#f7c}{T}}{2(\textcolor{#f00}{P}-\textcolor{#00f}{R})}}=\sqrt[3]{\frac{\left[\frac{\textcolor{#07f}{s}}n\right]-\left[\frac{\textcolor{#f7c}{t}}n\right]}{2([n^2\textcolor{#f00}{p}]-[n^2\textcolor{#00f}{r}])}}\\ &=\sqrt[3]{\frac{\left[\frac{\textcolor{#07f}{3q+4r}}n\right]-\left[\frac{\textcolor{#f7c}{q+4r}}n\right]}{[3n^2\textcolor{#f00}{(q+r)}+n^2\textcolor{#00f}{r}]-[n^2\textcolor{#f00}{(q+r)}+3n^2\textcolor{#00f}{r}]}}\\ &=\sqrt[3]{\frac1{n^3}}=\frac1n\\[8pt] \end{align}\end{cases}$
これを次のように仕込めば魔法の数式の出来上がり!
\begin{align} \displaystyle\sqrt[3]{\textcolor{#f7c}{\pm}\sqrt{\alpha}\textcolor{#07f}{\pm}\sqrt{\beta}}&=\sqrt[3]{\textcolor{#f7c}{\pm}\textcolor{#f7c}{T}\sqrt{\textcolor{#f00}{P}}\textcolor{#07f}{\pm}\textcolor{#07f}{S}\sqrt{\textcolor{#00f}{R}}}\\ &=\sqrt[3]{\textcolor{#f7c}{\pm}\frac{\textcolor{#f7c}{t}}n\sqrt{n^2\textcolor{#f00}{p}}\textcolor{#07f}{\pm}\frac{\textcolor{#07f}{s}}n\sqrt{n^2\textcolor{#00f}{r}}}\\&=\sqrt[3]{\textcolor{#f7c}{\pm}\textcolor{#f7c}{t}\sqrt{\textcolor{#f00}{p}}\textcolor{#07f}{\pm}\textcolor{#07f}{s}\sqrt{\textcolor{#00f}{r}}}\\ &=\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{p}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{r}}\\ &=\frac{\textcolor{#f7c}{\pm}\sqrt{n^2\textcolor{#f00}{p}}\textcolor{#07f}{\pm}\sqrt{n^2\textcolor{#00f}{r}}}n\\ &=\frac{\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{P}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{R}}}n\\[12pt] \end{align}
$$\therefore~
\begin{cases}
\textstyle\frac1{n^3}=\frac{\textcolor{#f7c}{T}}{\textcolor{#f00}{P}+3\textcolor{#00f}{R}}=\frac{\textcolor{#07f}{S}}{\textcolor{#00f}{R}+3\textcolor{#f00}{P}}~=\frac{\textcolor{#07f}{S}-\textcolor{#f7c}{T}}{2(\textcolor{#f00}{P}-\textcolor{#00f}{R})}\\[8pt]
\displaystyle\sqrt[3]{\textcolor{#f7c}{\pm}\textcolor{#f7c}{T}\sqrt{\textcolor{#f00}{P}}\textcolor{#07f}{\pm}\textcolor{#07f}{S}\sqrt{\textcolor{#00f}{R}}}=\left(\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{P}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{R}}\right)\sqrt[3]{\frac{\textcolor{#07f}{S}-\textcolor{#f7c}{T}}{2(\textcolor{#f00}{P}-\textcolor{#00f}{R})}}\end{cases}
$$
$ $
まず、三乗根内の平方根の係数を二乗して平方根内に入れてしまい、$\sqrt[3]{\textcolor{#f7c}{\pm}\sqrt{\alpha}\textcolor{#07f}{\pm}\sqrt{\beta}}$ という形にします。慣れないうちは $\alpha\geqq\beta$ となるように並べ替えておくのが吉かも。
このとき、$q^3=\alpha-\beta$ を満たす有理数 $q$ が存在することを確認しましょう。これが二重根号をキレイに外すための条件となっていますので、万が一無理数となってしまう場合にはそこで試合放棄して構いません(笑)
もっとも、一般的な試験問題や有理数解を持つ三次方程式由来の二重根号など確実に外せることが分かっている場合、$\alpha-\beta$ の三乗根は必ず有理数となるはずですのでこれについてはまず心配無用でしょう☆
ここから
$$\sqrt[3]{\textcolor{#f7c}{\pm}\sqrt{\alpha}\textcolor{#07f}{\pm}\sqrt{\beta}}=\sqrt[3]{\textcolor{#f7c}{\pm}\textcolor{#f7c}{T}\sqrt{\textcolor{#f00}{P}}\textcolor{#07f}{\pm}\textcolor{#07f}{S}\sqrt{\textcolor{#00f}{R}}}=\left(\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{P}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{R}}\right)\sqrt[3]{\frac{\textcolor{#07f}{S}-\textcolor{#f7c}{T}}{2(\textcolor{#f00}{P}-\textcolor{#00f}{R})}}$$
が成り立つように数式変形させるわけですが、これについては
$$\frac1{n^3}=\frac{\textcolor{#07f}{S}-\textcolor{#f7c}{T}}{2(\textcolor{#f00}{P}-\textcolor{#00f}{R})}\left(=\frac{\textcolor{#f7c}{T}}{\textcolor{#f00}{P}+3\textcolor{#00f}{R}}=\frac{\textcolor{#07f}{S}}{\textcolor{#00f}{R}+3\textcolor{#f00}{P}}\right)$$
を満たす有理数 $n$ が見つかるように調整するだけでオッケイ。
ヒューリスティックではありますが、一般に出回っているような問題の場合シンプルな解にする傾向が強いため $n=2$ あるいは $n=1$ でアタリをつけてみるとほぼほぼ見つかる印象です。
他、過去記事
みゆ🌹の魔法 その2 平方根 in 三乗根
にて紹介させていただいた魔法を導入する方法もあります。 魔法の手順内の $s$ と $r$ はこちらの記事では $n=2$ のときの $\textcolor{#07f}{S}$ と $\textcolor{#00f}{R}$ に相当しておりますので前章で出てきた $\begin{cases}\textcolor{#07f}{S}=\frac{\textcolor{#07f}{s}}n\\\textcolor{#00f}{R}=n^2\textcolor{#00f}{r}\end{cases}$ を用いて $\begin{cases}\textcolor{#07f}{S}=\frac{\textcolor{#07f}{s}}2\\\textcolor{#00f}{R}=4\textcolor{#00f}{r}\end{cases}$ で読み替えてあげれば対応完了! すると$\cdots$
$ $
$q^3=\alpha-\beta$ の $q$ を用いて
$\begin{cases} \beta=\textcolor{#07f}{s}^2\textcolor{#00f}{r}\\ 3q=\textcolor{#07f}{s}-4\textcolor{#00f}{r} \end{cases}$
を満たすような $s$ と $r$ を探し、任意の(都合のよい)$n$ を用いて
$\begin{cases}\textcolor{#f7c}{T}=\frac{\textcolor{#07f}{s}-2q}n\\\textcolor{#f00}{P}=n^2(\textcolor{#00f}{r}+q)\\\textcolor{#07f}{S}=\frac{\textcolor{#07f}{s}}n\\\textcolor{#00f}{R}=n^2\textcolor{#00f}{r}\end{cases}$
と導くことも可能です。
いずれもヒューリスティックな手法であることにはかわりありませんが、試験問題のようなキレイな値になるケースならこれらの方法で案外見つかるのでお試しを(〃ω〃)
$ $
ネット上でみかけた二重根号問題をかたっぱしからイリュージョンしてみました☆
$$\sqrt[3]{\textcolor{#f7c}{\pm}27\textcolor{#07f}{\pm}6\sqrt{21}}=
\sqrt[3]{\textcolor{#f7c}{\pm}\textcolor{#f7c}{9}\sqrt{\textcolor{#f00}{9}}\textcolor{#07f}{\pm}\textcolor{#07f}{6}\sqrt{\textcolor{#00f}{21}}}=(\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{9}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{21}})\sqrt[3]{\frac{(\textcolor{#07f}{6}-\textcolor{#f7c}{9})}{2(\textcolor{#f00}{9}-\textcolor{#00f}{21})}}=\frac{\textcolor{#f7c}{\pm}3\textcolor{#07f}{\pm}\sqrt{21}}{2}$$
$$\begin{align}
\sqrt[3]{\frac{\textcolor{#f7c}{\pm}10\textcolor{#07f}{\pm}7\sqrt{2}}4}=&
\sqrt[3]{\textcolor{#f7c}{\pm}\textcolor{#f7c}{\frac54}\sqrt{\textcolor{#f00}{4}}\textcolor{#07f}{\pm}\textcolor{#07f}{\frac74}\sqrt{\textcolor{#00f}{2}}}=(\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{4}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{2}})\sqrt[3]{\frac{(\textcolor{#07f}{\frac74}-\textcolor{#f7c}{\frac54})}{2(\textcolor{#f00}{4}-\textcolor{#00f}{2})}}=\frac{\textcolor{#f7c}{\pm}2\textcolor{#07f}{\pm}\sqrt{2}}{2}\\
=&
\sqrt[3]{\textcolor{#f7c}{\pm}\textcolor{#f7c}{\frac52}\sqrt{\textcolor{#f00}{1}}\textcolor{#07f}{\pm}\textcolor{#07f}{\frac72}\sqrt{\textcolor{#00f}{\frac12}}}=(\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{1}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{\frac12}})\sqrt[3]{\frac{(\textcolor{#07f}{\frac72}-\textcolor{#f7c}{\frac52})}{2(\textcolor{#f00}{1}-\textcolor{#00f}{\frac12})}}=\textcolor{#f7c}{\pm}1\textcolor{#07f}{\pm}\sqrt{\frac12}
\end{align}$$
$$\begin{align}
\sqrt[3]{\textcolor{#f7c}{\pm}\sqrt{\frac{28}{27}}\textcolor{#07f}{\pm}1}=&
\sqrt[3]{\textcolor{#f7c}{\pm}\textcolor{#f7c}{\frac{2}{3}}\sqrt{\textcolor{#f00}{\frac{21}9}}\textcolor{#07f}{\pm}\textcolor{#07f}{1}\sqrt{\textcolor{#00f}{1}}}=(\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{\frac{21}9}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{1}})\sqrt[3]{\frac{(\textcolor{#07f}{1}-\textcolor{#f7c}{\frac23})}{2(\textcolor{#f00}{\frac{21}9}-\textcolor{#00f}{1})}}=\frac{\textcolor{#f7c}{\pm}\sqrt{\frac{21}9}\textcolor{#07f}{\pm}1}{2}=\textcolor{#f7c}{\pm}\frac{\sqrt{21}}6\textcolor{#07f}{\pm}\frac{1}{2}\\
=&
\sqrt[3]{\textcolor{#f7c}{\pm}\textcolor{#f7c}{\frac{2}{9}}\sqrt{\textcolor{#f00}{21}}\textcolor{#07f}{\pm}\textcolor{#07f}{\frac39}\sqrt{\textcolor{#00f}{9}}}=(\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{21}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{9}})\sqrt[3]{\frac{(\textcolor{#07f}{\frac39}-\textcolor{#f7c}{\frac29})}{2(\textcolor{#f00}{21}-\textcolor{#00f}{9})}}=\frac{\textcolor{#f7c}{\pm}\sqrt{21}\textcolor{#07f}{\pm}3}{6}
\end{align}$$
$$\begin{align}
\sqrt[3]{\frac{\textcolor{#f7c}{\pm}153\sqrt6\textcolor{#07f}{\pm}265\sqrt{2}}2}=&\sqrt[3]{\textcolor{#f7c}{\pm}\textcolor{#f7c}{\frac{51}2}\sqrt{\textcolor{#f00}{54}}\textcolor{#07f}{\pm}\textcolor{#07f}{\frac{53}2}\sqrt{\textcolor{#00f}{50}}}=(\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{54}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{50}})\sqrt[3]{\frac{(\textcolor{#07f}{\frac{53}2}-\textcolor{#f7c}{\frac{51}2})}{2(\textcolor{#f00}{54}-\textcolor{#00f}{50})}}=\frac{\textcolor{#f7c}{\pm}3\sqrt6\textcolor{#07f}{\pm}5\sqrt{2}}{2}\\
=&\sqrt[3]{\textcolor{#f7c}{\pm}\textcolor{#f7c}{51}\sqrt{\textcolor{#f00}{\frac{27}2}}\textcolor{#07f}{\pm}\textcolor{#07f}{53}\sqrt{\textcolor{#00f}{\frac{25}2}}}=(\textcolor{#f7c}{\pm}\sqrt{\textcolor{#f00}{\frac{27}2}}\textcolor{#07f}{\pm}\sqrt{\textcolor{#00f}{\frac{25}2}})\sqrt[3]{\frac{(\textcolor{#07f}{53}-\textcolor{#f7c}{51})}{2(\textcolor{#f00}{\frac{27}2}-\textcolor{#00f}{\frac{25}2})}}=\textcolor{#f7c}{\pm}\frac32\sqrt6\textcolor{#07f}{\pm}\frac52\sqrt{2}\\
\end{align}$$
$ $
というわけで、今回は数式で遊んでみました。最後に、この記事を書くにあたって最初にひらめいた恒等式をオマケとして掲載しておきますね。
$$ y^3=\left(\frac{x-y}2\right)^2(x+2y)-\left(\frac{x+y}2\right)^2(x-2y)\\ \sqrt[3]{\frac{\textcolor{#f7c}{\pm}(x-y)\sqrt{x+2y}\textcolor{#07f}{\pm}(x+y)\sqrt{x-2y}}2}=\frac{\textcolor{#f7c}{\pm}\sqrt{x+2y}\textcolor{#07f}{\pm}\sqrt{x-2y}}2 $$
$\begin{cases}
x=2q+4r\\
y=q
\end{cases}$ とすると
$$
q^3=(q+4r)^2(q+r)-(3q+4r)^2r\\
\sqrt[3]{\textcolor{#f7c}{\pm}(q+4r)\sqrt{q+r}\textcolor{#07f}{\pm}(3q+4r)\sqrt{r}}=\textcolor{#f7c}{\pm}\sqrt{q+r}\textcolor{#07f}{\pm}\sqrt{r}
$$
$ $
内容について検証くださった
nayuta_ito
先生に感謝致します。