今回のテーマは、京大2006文系第5問を帰納法で解く、です。
受験生の中では割と有名問題なので、ご存知の方も多いと思います。先に答えを言ってしまうと、輪を半分にする境界をカチカチ回転させて、その片側の白玉、黒玉の個数の推移を追うことで、中間値の定理もどきが使えて解決します。しかし、今回は別の方法を考えたいと思います。というのも、多くの参考書や解説記事では、「帰納法を使ってみようと思うのも悪くはないが、残念なことにこの問題ではうまく行かない」などと、帰納法によるアプローチが断念されていました。だったら帰納法でやってやろうじゃないかと(笑)。なかなか味わいのある解法になったと思いますのでぜひ読んでみてください!
(i)
(ii)
下図のように、連続した
連続n個
この中の白玉の個数は
(a)それらが重ならないとき
2つの連続n個が重ならない
これはすでに題意を満たしている。(白玉と黒玉を同数ずつに分けられている。)
(b)それらが重なるとき
2つの連続n個が重なる
上図のように重なり(赤)と円の中心に関してそれと対称な部分(青)をくっつけて新たな円とすると、これは白玉と黒玉が偶数個ずつで総数が
以上より
いかがだったでしょうか。鳩の巣原理がうまく効いていて、お気に入りの解法です。
読んでいただきありがとうございました。